Why hypersonic propulsion?
What's different about it?
AirCycles4Hypersonics.xls spreadsheet
“Conventional” ramjet
Scramjets
Sidebar: Pulse detonation engines
Hypersonic propulsion - motivation

- Why use air even if you’re going to space?
 - Carry only fuel, not fuel + O\(_2\), while in atmosphere
 - 8x mass savings (H\(_2\)-O\(_2\)), 4x (hydrocarbons)
 - Actually more than this when ln() term in Brequet range equation is considered
 - Use aerodynamic lifting body rather than ballistic trajectory
 - Ballistic: need Thrust/weight > 1
 - Lifting body, steady flight: Lift (L) = weight (mg); Thrust (T) = Drag (D), Thrust/weight = L/D > 1 for any decent airfoil, even at hypersonic conditions

What’s different about hypersonic propulsion?

- Stagnation temperature T\(_t\) - measure of total energy (thermal + kinetic) of flow - is really large even before heat addition - materials problems
 \[T_t = T \left(1 + \frac{\gamma - 1}{2} M^2 \right) \]
 - T = static temperature - T measured by a thermometer moving with the flow
 - T\(_t\) = temperature of the gas if it is decelerated adiabatically to M = 0
 - \(\gamma\) = gas specific heat ratio = C\(_p\)/C\(_v\); M = Mach number = u/(\(\gamma RT\))\(^{1/2}\)
- Stagnation pressure - measure of usefulness of flow (ability to expand flow) is really large even before heat addition - structural problems
 \[P_t = P \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\gamma / (\gamma - 1)} \]
 - P = static pressure - P measured by a pressure gauge moving with the flow
 - P\(_t\) = pressure of the gas if it is decelerated reversibly and adiabatically to M = 0
 - Large P\(_t\) means no mechanical compressor needed at large M
What’s different about hypersonic propulsion?

- Why are T_1 and P_1 so important? Recall isentropic expansion to $P_e = P_a$ (optimal exit pressure yielding maximum thrust) yields

$$u = \frac{2\gamma \text{RT}}{\gamma - 1} \left[\left(\frac{P_a}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

- … but it’s difficult to add heat at high M without major loss of stagnation pressure.

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion

What’s different about hypersonic propulsion?

- High temperatures: γ not constant, also molecular weight not constant - dissociation - use GASEQ (http://www.gaseq.co.uk) to compute stagnation conditions.

- Example calculation: standard atmosphere at 100,000 ft
 - $T_1 = 227K$, $P_1 = 0.0108$ atm, $c_1 = 302.7$ m/s, $h_1 = 70.79$ kJ/kg (atmospheric data from http://www.digitaldutch.com/atmoscalc/)
 - Pick $P_2 > P_1$, compress isentropically, note new T_2 and h_2
 - 1st Law: $h_1 + u_1^2/2 = h_2 + u_2^2/2$; since $u_2 = 0$, $h_2 = h_1 + (M_1 c_1)^2/2$ or $M_1 = \left[2(h_2 - h_1)/c_1^2 \right]^{1/2}$
 - Simple relations ok up to $M = 7$
 - Dissociation not as bad as might otherwise be expected at ultra high T, since P increases faster than T

- Limitations of these estimates
 - Ionization not considered
 - Stagnation temperature relation valid even if shocks, friction, etc. (only depends on 1st law) but stagnation pressure assumes isentropic flow
 - Calculation assumed adiabatic deceleration - radiative loss (from surfaces and ions in gas) may be important.

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion
What's different about hypersonic propulsion?

WOW! HOT WARM COLD

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000K</td>
<td>N+O+e⁻</td>
</tr>
<tr>
<td>3000K</td>
<td>N₂+O</td>
</tr>
<tr>
<td>1000K</td>
<td>N₂+O₂</td>
</tr>
<tr>
<td>200K</td>
<td>N₂+O₂</td>
</tr>
</tbody>
</table>

Stagnation pressure (atm)

Stagnation temperature (K)

Mach number

Conventional” ramjet

- Incoming air decelerated isentropically to M = 0 - high T, P
- No compressor needed
- Heat addition at M = 0 - no loss of P₁ - to max. allowable T (called T₁)
- Expand to Pₙ = P₁
- Doesn't work well at low M - P/P₁ & T/T₁, low - Carnot efficiency low
- As M increases, P/P₁ and T/T₁ increases, cycle efficiency increases, but if M too high, limited ability to add heat (T₁ close to Tₘₐₓ) - good efficiency but less thrust
“Conventional” ramjet - effect of M_1

- "Banana" shaped cycles for low M_1, tall skinny cycles for high M_1, "fat" cycles for intermediate M_1

Basic ramjet $T_2/T_1 = 7$

“Conventional” ramjet example

- Example: $M_1 = 5$, $T_2/T_a = 12$, $\gamma = 1.4$
- Initial state (1): $M_1 = 5$, $T_1 = T_a$, $P_1 = P_a$
- State 2: decelerate to $M_2 = 0$
 - $T_2 = T_a\left(1 + \frac{\gamma - 1}{2} M_1^2\right) = 6T_a$
 - $P_2 = P_a\left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\gamma-1} = 529.1P_a$
- State 4: add at heat const. P; $M_4 = 0$, $P_4 = 529.1P_a$, $T_4 = T_a = 12T_a$
- State 9: expand to $P_9 = P_1 = P_a$
 - $P_4 = 529.1P_a = P_9\left(1 + \frac{\gamma - 1}{2} M_9^2\right)^{\gamma-1} = P_a\left(1 + \frac{1.4 - 1}{2} M_9^2\right)^{1/\gamma-1} \Rightarrow M_9 = 5.00$
 - $T_4 = 12T_a = T_9\left(1 + \frac{\gamma - 1}{2} M_9^2\right) = T_a\left(1 + \frac{1.4 - 1}{2} 5^2\right) \Rightarrow T_9 = 2T_a$

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion
“Conventional” ramjet example

- Specific thrust (ST) (assume FAR $\ll 1$)

\[\text{Thrust} = \dot{m} \left[(1 + \text{FAR}) u_0 - u_1 \right] + (P_0 - P_1) A_0; \text{FAR} \ll 1, P_0 = P_1 \]

\[\Rightarrow ST = \frac{\text{Thrust}}{\dot{m} a_1} = \frac{u_0}{a_1} - \frac{u_1}{a_1} = \frac{\dot{m} a_0}{a_0 a_1} - M_1 = M \sqrt{\frac{T_0}{T_1}} - M_1 = 5 \sqrt{2} - 5 = 2.07 \]

- TSFC and overall efficiency

\[\text{TSFC} \equiv \frac{\text{Heat input}}{\text{Thrust} \cdot a_1} = \frac{\dot{m} C_p (T_4 - T_2)}{\text{Thrust} \cdot a_1} = \frac{\dot{m} a_1}{\text{Thrust}} \frac{C_p}{a_1} (T_4 - T_2) \]

\[= \frac{1}{ST} \frac{\gamma}{\gamma - 1} R (12 T_1 - 6 T_1) = \frac{1}{2.07 1.4 - 1} (12 - 6) = 7.24; \]

\[\eta_o = \frac{M_1}{\text{TSFC}} = \frac{5}{7.24} = 0.691 \]

“Conventional” ramjet - effect of M_1

- Basic ramjet $\tau_\lambda = 7$

- Plots showing thrust and fuel consumption, specific thrust, TSFC, and overall efficiency vs. flight mach number M_1.

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion

11

12
Scramjet (Supersonic Combustion RAMjet)

- What if $T_t > T_{\text{max}}$ allowed by materials or $P_t > P_{\text{max}}$ allowed by structure?
 - Can't decelerate to $M = 0$!
- Need to mix fuel & burn supersonically, never allowing air to decelerate to $M = 0$
- Many laboratory studies, very few successful test flights (e.g. X-43 below)

Australian project:

US project (X-43): http://www1.nasa.gov/missions/research/x43-main.html
- Steady flight (thrust \approx drag) achieved at $M_1 \approx 9.65$ at 110,000 ft altitude ($u_1 \approx 2934$ m/s $= 6562$ mi/hr)
- 3.8 lbs. H_2 burned during 10 - 12 second test
- Rich H_2-air mixtures ($\phi \approx 1.2 - 1.3$), ignition with silane (SiH_4, ignites spontaneously in air)
- …but no information about the conditions at the combustor inlet, or the conditions during combustion (constant P, T, area, …?)
- Real-gas stagnation temperatures 3300K (my model, slide 36: 3500K), surface temperatures up to 2250K (!)

- Acceleration to steady flight achieved at $M_1 \approx 5$ at 70,000 ft for 140 seconds using hydrocarbon fuel
Diffuser
- Mach number decrements from flight Mach number (M_1) to the specified value after the diffuser in 25 equal steps
- Stagnation pressure decrements from its value at M_1 (P_{1t}) to $\pi_d P_{1t} = \eta_d^{\gamma/(\gamma-1)}P_{1t}$ in 25 equal steps
- Static P and T are calculated from M and P_{1t}, T_{1t}
- Sound speed c is calculated from T, then u is calculated from c and M
- No heat input or work output in diffuser, but may have wall heat transfer
- Shocks not implemented (usually one would have a series of oblique shocks in an inlet, not a single normal shock)

Combustor
- Heat addition may be at constant area (Rayleigh flow), P or T
- Mach number after diffuser is a specified quantity (not necessarily zero) - Mach number after diffuser sets compression ratio since there is no mechanical compressor
- Rayleigh curves starting at states 1 and 2 included to show constant area / no friction on T-s
- Nozzle
 - Static (not stagnation) pressure decrements from value after afterburner to specified exhaust pressure in 25 equal steps
 - Stagnation pressure decrements from its value after afterburner (P_{7t}) to $\pi n P_{7t} = \eta n^{\gamma/(\gamma-1)} P_{7t}$ in 25 equal steps
 - Static P and T are calculated from M and P_{t}, T_{t}
 - Sound speed c is calculated from T, then u is calculated from c and M
 - No heat input or work output in diffuser, but may have wall heat transfer
 - Heat transfer occurs according to usual law

- Combustion parameter $\tau_\lambda = T_{4t}/T_1$ (specifies stagnation temperature, not static temperature, after combustion)
- Caution on choosing τ_λ
 - If $\tau_\lambda T_1 < \tau_1 T_1$ ($\tau_1 = 1 + (\gamma-1)/2 M_1^2$) (maximum allowable temperature after heat addition > temperature after deceleration) then no heat can be added (actually, spreadsheet will try to refrigerate the gas…)
 - For constant-area heat addition, if $\tau_\lambda T_1$ is too large, you can’t add that much heat (beyond thermal choking point) & spreadsheet “chokes”
 - For constant-T heat addition, if $\tau_\lambda T_1$ is too large, pressure after heat addition < ambient pressure - overexpanded jet - still works but performance suffers
 - For constant-P heat addition, no limits! 😊 But temperatures go sky-high 😊
 - All cases: f (fuel mass fraction) needed to obtain specified τ_λ is calculated - make sure this doesn’t exceed $f_{\text{stoichiometric}}$!
Hypersonic propulsion (const. T) - T-s diagrams

- With Const. T combustion, maximum temperature within sane limits, but as more heat is added, P decreases, eventually \(P_4 < P_9 \).
- Also, latter part of cycle has low Carnot-strip efficiency since constant T and P lines will converge.

Const. T combustion, \(M_1 = 10; M_2 = 2.61 \) (\(T_2 = 2000K \))
Stoich. \(\text{H}_2\)-air (f = 0.0283, \(Q_R = 1.2 \times 10^8 \text{ J/kg} \) ⇒ \(\tau_\lambda = 35.6 \))

Hypersonic propulsion (const. T) - effect of \(M_1 \)

- Minimum \(M_1 = 6.28 \) - below that \(T_2 < 2000 \) even if \(M_2 = 0 \)
- No maximum \(M_2 \)
- \(\eta_{\text{overall}} \) improves slightly at high \(M_1 \) due to higher \(\eta_{\text{thermal}} \) (lower \(T_9 \))

Const. T combustion, \(M_1 = \text{varies}; M_2 \) adjusted so that \(T_2 = 2000K \);
\(\text{H}_2\)-air (\(Q_R = 1.2 \times 10^8 \text{ J/kg} \)), \(\tau_\lambda \) adjusted so that f = f_{stoichiometric}

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion
Hypersonic propulsion (const. T) - effect of τ_λ

- $M_1 = 10$, $T_2 = 2000K$ specified $\Rightarrow M_2 = 2.61$
- At $\tau_\lambda = 21.1$ no heat can be added
- At $\tau_\lambda = 35.6$, $f = 0.0283$ (stoichiometric H_2-air)
- At $\tau_\lambda = 40.3$ (assuming one had a fuel with higher heating value than H_2), $P_4 = P_9$
- f & Specific Thrust increase as more fuel is added (τ_λ increasing), η_{overall} & I_{SP} decrease due to low η_{thermal} at high heat addition (see T-s diagram)

Hypersonic propulsion (const. T) - effect of M_2

- Maximum $M_2 = 3.01$ - above that $P_4 < P_9$ after combustion (you could go have higher M_2 but why would you want to - heat addition past $P_4 = P_9$ would reduce thrust!)
- No minimum M_2, but lower M_2 means higher T_2 - maybe beyond materials limits (after all, high T_1 is the whole reason we’re looking at alternative ways to burn at hypersonic Mach numbers)
- η_{overall} decreases at higher M_2 due to lower η_{thermal} (lower T_2)
Hypersonic propulsion (const. T) - effect of η_d

- Obviously as η_d decreases, all performance parameters decrease
- If η_d too low, pressure after stoichiometric heat addition < P_1, so need to decrease heat addition (thus τ_λ)
- Diffuser can be pretty bad ($\eta_d \approx 0.25$) before no thrust

Hypersonic propulsion (const. T) - effect of η_n

- Obviously as η_n decreases, all performance parameters decrease
- Nozzle can be pretty bad ($\eta_n \approx 0.32$) before no thrust, but not as bad as diffuser
Hypersonic propulsion (const. P) - T-s diagrams

- With Const. P combustion, no limitations on heat input, but maximum temperature becomes insane (actually dissociation & heat losses would decrease this T substantially)
- Carnot-strip (thermal) efficiency independent of heat input; same as conventional Brayton cycle (s-P-s-P cycle)

Const. P combustion, \(M_1 = 10; M_2 = 2.61 \) \((T_2 = 2000K) \)
Stoich. \(H_2 \)-air \((f = 0.0283, Q_R = 1.2 \times 10^8 \text{ J/kg} \Rightarrow \tau_\lambda = 35.6) \)

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion

Hypersonic propulsion (const. P) - performance

- \(M_1 = 10, T_2 = 2000K \) specified \(\Rightarrow M_2 = 2.61 \)
- Still, at \(\tau_\lambda = 21.1 \) no heat can be added
- At \(\tau_\lambda = 35.6, f = 0.0283 \) (stoichiometric \(H_2 \)-air)
- No upper limit on \(\tau_\lambda \) (assuming one has a fuel with high enough \(Q_R \))
- \(f \) & Specific Thrust increase as more fuel is added \((\tau_\lambda \text{ increasing}), \eta_{\text{overall}} \text{ & } I_{SP} \)
decrease only slightly at high heat addition due to lower \(\eta_{\text{propulsive}} \)

Const. P combustion, \(M_1 = 10; M_2 = 2.61 \) \((T_2 = 2000K) \)
\(H_2 \)-air \((Q_R = 1.2 \times 10^8 \text{ J/kg}) \), \(\tau_\lambda \) (thus \(f \)) varies

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion
Hypersonic propulsion (const. A) - T-s diagrams

- With Const. A combustion, heat input limited by thermal choking, maximum temperature even more insane than constant P
- … but Carnot-strip efficiency is awesome!

Hypersonic propulsion (const. A) - performance

- $M_1 = 10, T_2 = 2000K$ specified $\Rightarrow M_2 = 2.61$
- Still, at $\tau_\lambda = 21.1$ no heat can be added
- At $\tau_\lambda = 30.5$, thermal choking at $f = 0.0193 < 0.0283$
- f & Specific Thrust increase as more fuel is added (τ_λ increasing), η_{overall} & I_{SP} decrease slightly at high heat addition due to lower $\eta_{\text{propulsive}}$

Const. A combustion, $M_1 = 10$; $M_2 = 2.61$ ($T_2 = 2000K$)

H_2-air ($Q_R = 1.2 \times 10^8$ J/kg) $\Rightarrow \tau_\lambda = 30.1$; (can’t add stoichiometric amount of fuel at constant area for this M_1 and M_2)

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion
Consider a very simple propulsion system in a standard atmosphere at 100,000 feet (227K and 0.0107 atm, with $\gamma = 1.4$) in which

1. Incoming air is decelerated isentropically from $M = 15$ until $T = 3000K$
2. Heat is added at constant T until ambient pressure is reached (not a good way to operate, but this represents a sort of maximum heat addition)

(a) To what Mach number could the air be decelerated if the maximum allowable gas temperature is 3000K? What is the corresponding pressure?

\[
T_i \left(1 + \frac{\gamma - 1}{2} M^2_i\right) = T_f \left(1 + \frac{\gamma - 1}{2} M^2_f\right)
\]

\[
(227K) \left(1 + \frac{1.4 - 1}{2} 15^2\right) = (3000K) \left(1 + \frac{1.4 - 1}{2} M^2_f\right)
\]

\[
M^2_f = \frac{2}{1.4 - 1} \left[\frac{227K}{3000K} \left(1 + \frac{1.4 - 1}{2} 15^2\right) - 1\right] = 12.403 \Rightarrow M_f = 3.522
\]

\[
P_f = \left(\frac{T_f}{T_i}\right)^{\frac{\gamma - 1}{\gamma}} = \left(\frac{3000K}{227K}\right)^{\frac{1.4 - 1}{1.4}} = 8391; P_f = 8391P_i = 8391(0.0107) = 89.79 atm
\]

(b) What is the exit Mach (M_e) number? What is the area ratio?

\[
P_e / P_f = \exp \left[\frac{\gamma}{2} (M_e^2 - M^2_i)\right]; \ln (P_e / P_f) = \frac{\gamma}{2} (M_e^2 - M^2_i)
\]

\[
M_e^2 = M^2_i - \frac{2}{\gamma} \ln (P_e / P_f) = 3.522^2 - \frac{2}{1.4} \ln (1/8391) = 25.31 \Rightarrow M_e = 5.031
\]

\[
A_e / A_i = \frac{M_i}{M_e} \exp \left[\frac{\gamma}{2} (M_e^2 - M^2_i)\right] = \frac{3.522}{5.031} \exp \left[\frac{1.4}{2} (5.031^2 - 3.522^2)\right] = 5869
\]

(c) What is the specific thrust?

\[
ST = \text{Thrust}/m_e c_1 = \dot{m}_e (u_e - u_i)/m_e c_1 = (M_e c_e - M_i c_i)/c_1 = \frac{M_e (T_e / T_i)^{1/2} - M_i}{T_e / T_i}
\]

\[
ST = M_e (T_e / T_i)^{1/2} - M_i = 5.031(3000K/227K)^{1/2} - 15 = 3.289
\]
Example - continued

(d) What is the thrust specific fuel consumption?

\[TSFC = \frac{\text{(Heat input)}}{\text{Thrust} \times c_i} = \frac{[\dot{m}_i(C_p(T_{3i} - T_{2i})c_i)]}{[\text{Thrust} \times c_i^2]} \]

\[= \frac{[\dot{m}_i c_i]}{\text{Thrust}} \times \left[\frac{\gamma}{(\gamma - 1)} \right] R(T_{3i} - T_{2i}) = \frac{[\gamma / (\gamma - 1)]}{[\text{ST}]} \times [1 / (\gamma - 1)] \times \left[(T_{3i} - T_{2i}) / T_i \right] \]

\[T_o = T_i \left(1 + \frac{\gamma - 1}{2} M_i^2 \right) \]

\[T_a = T_i \left(1 + \frac{\gamma - 1}{2} M_i^2 \right) \]

\[T_2 = T_i \left(1 + \frac{\gamma - 1}{2} M_i^2 \right) - \frac{T_a - T_o}{T_i} \]

\[T_3 = T_i \left(1 + \frac{\gamma - 1}{2} M_i^2 \right) - \frac{T_a - T_o}{T_i} \]

\[T_0 = T_i \left(1 + \frac{\gamma - 1}{2} M_i^2 \right) - \frac{T_a - T_o}{T_i} \]

\[T_s = T_i \left(1 + \frac{\gamma - 1}{2} M_i^2 \right) - \frac{T_a - T_o}{T_i} \]

\[TSFC = \frac{\gamma}{\gamma - 1} \left(\frac{T_o - T_a}{T_i} \right) \frac{T_i - T_s}{T_i} = 3.279 \frac{1}{1.4 - 1} (34.11) = 26.01 \text{ (lousy!)} \]

(c) Can stoichiometric hydrogen-air mixtures generate enough heat to accomplish this?

Determine if the heat release per unit mass \(f_{\text{stoich}} Q_b \) is equal to or greater than the heat input needed \(C_P(T_{3i} - T_{2i}) \).

\[C_P(T_{3i} - T_{2i}) = \frac{\gamma R T_o}{\gamma - 1} \frac{T_i - T_s}{T_i} = 1.4 \left(\left[\frac{8.314 \text{ J/moleK}}{0.02897 \text{ kg/mole}} \right] / 1.4 - 1 \right) (34.11) (227 \text{ K}) \]

\[f_{\text{stoich}} Q_b = (0.0283) (1.20 \times 10^4 \text{ J/kg}) = 3.396 \times 10^4 \text{ J/kg} \]

Heat input \(C_P(T_{3i} - T_{2i}) \) is 7.777 \times 10^4 \text{ J/kg}.

 Requirement is higher by a factor of \(\approx 2.3 \), so H₂-air cannot provide this much heat release.

Summary

- Propulsion at high Mach numbers is very different from conventional propulsion because
 - The optimal thermodynamic cycle (decelerate to \(M = 0 \)) yields impractically high \(T \) & \(P \)
 - Deceleration from high \(M \) to low \(M \) without major \(P \) losses is difficult
 - Propulsive efficiency \(\approx 2u_i / (u_i + u_o) \) is always high
- 3 ways of adding heat discussed
 - Constant \(T \)
 - Probably most practical case
 - Low efficiency with large heat addition
 - Large area ratios
 - Constant \(P \) - best performance but very high \(T \)
 - Constant \(A \) - thermal choking limits heat input
Sidebar topic: pulse detonation engine

- Discussed in more detail in AME 514
- Simple system - fill tube with detonable mixture, ignite, expand exhaust
- Something like German WWII “buzz bombs” that were “Pulse Deflagration Engines”
- Advantages over conventional propulsion systems
 - Nearly constant-volume cycle vs. constant pressure - higher ideal thermodynamic efficiency
 - No mechanical compressor needed
 - (In principle) can operate from zero to hypersonic Mach numbers

Fill Tube → Detonate Mixture → Exhaust

Refill Tube, Repeat

Courtesy Fred Schauer

Pulse detonation engine concept

- Challenges (i.e. problems...)
 - Detonation initiation in small tube lengths
 - Deceleration of gas to low M at high flight M
 - Fuel-air mixing
 - Noise

Kailasanath (2000)
PDE Research Engine - Wright-Patterson Air Force Base

- Pontiac Grand Am engine driven by electric motor used as air pump to supply PDE
- Allows study of high frequency operation, multi-tube effects

Photos courtesy F. Schauer

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion

Videos of H_2-air PDE in operation

- 1 Tube @ 16Hz
- 4 Tubes @ 4Hz each
- 2 Tubes @ High Frequency

Videos courtesy F. Schauer

AME 436 - Spring 2016 - Lecture 15 - Hypersonic Propulsion
Performance of “laboratory” PDE

- Performance (Schauer et al., 2001) using H₂-air similar to predictions unless too lean (finite-rate chemistry, not included in calculations)

![Graph showing performance vs. PHI]

Effect of tube fill fraction

- Better performance with lower tube fill fraction - better propulsive efficiency (accelerate large mass by small Δu, just like turbofan vs. turbojet), but this is of little importance at high M₁ where Δu << u₁

![Graph showing effect of tube fill fraction]