
Summary of radiation in participating media 
 

Governing equations (Chapter 9) 
 
Emission, absorption, scattering 
 
Over a distance ds, the spectral intensity Iη (watts per m2 of cross-sectional area per steradian per unit 
wavenumber {m-1}) a beam of radiation is attenuated by absorption by 

 
where κη is the spectral absorption coefficient at wavenumber η = 1/λ, where λ is the wavelength of the radiation.  
From Eq. 9.3 it is clear that the units of κη are m-1 or cm-1.  Equation 9.3 is reasonable in that the rate of 
attenuation is proportional to the amount of radiation there is to attenuate, and is proportional (for 
infinitesimal path lengths ds, where dIη << Iη) to the path length ds and thus is proportional the number of 
molecules or particles the beam encounters.  In the unrealistic case κη = constant for all η, the medium is 
called a gray medium. Since κη will be affected by the number of molecules per unit volume along the path ds, 
sometimes κη is given per unit of partial pressure or density, in which case the units would be m-1atm-1 or m-

1(kg/m3)-1 respectively.  Attenuation of Iη by scattering is defined analogously, i.e. 

 
where σsη is the scattering coefficient (m-1) at wavenumber η.  The extinction coefficient of βη is the sum of the 
absorption and scattering coefficients 
 

 
 
The optical thickness τη (dimensionless) for wavenumber η is defined as 

 
So that 

  
τη >> 1 implies that any given photon is very likely absorbed or scattered over the path length s; τη << 1 
implies that any given photon is very likely not absorbed or scattered over this path length. 
 
The difference between decrease in I due to absorption or due to scattering is that scattering merely redirects incident radiant 
intensity that was in the direction of s to a different direction, whereas absorption decreases the total radiant power. 
 
Iη increases along the same path due to emission 

 
which is a surprising result on two counts: (1) the emission depends on the absorption coefficient (!) and (2) 
the emission is proportional to the blackbody spectral intensity Ibη, not the local intensity Iη.  Ibη = Ebη/π, where 
Ebη is the blackbody emissive power given by the Planck radiation theory: 

 
Note that Ibη does not depend on the medium in any way except for the index of refraction n, which is very 
close to 1 for gases; Ibη just depends on the temperature T and wavenumber η.  Recall that 
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Combining (9.3) and (9.11) yields, for non-scatting media, 

 
which can be integrated from 0 to s to obtain 

 
which is physically reasonable, since as τη → ∞, Iη → Ibη, and thus the intensity cannot grow larger than the 
blackbody intensity Ibη for that wavenumber.  This is the physical reason that emission and absorption have 
to be tied together though κη.  Also, the effect of the incident intensity Iη(0) (which might be, for example, 
from an opaque wall located at s = 0 that might be hotter or colder than the medium itself) decays 
exponentially as s increases.  Equation (9.13) motivates a definition of spectral emittance; for no incident 
radiation (Iη(0) = 0) the emittance is just the intensity divided by the blackbody intensity for that 
wavenumber: 

. 
Note also that the transmittance (fraction of radiation transmitted through a layer of gas) is given by e-τη, and 
since transmittance + reflectance + absorptance = 1, and the reflectance ≈ 0 for gases, the absorptance = 1 - 
e-τη = εη.  In other words, as with opaque surfaces, emittance and absorptance are equal. 
 
Iη also increases due to scattering in the direction 

! 

ˆ s  according to 

 
where Φη is the phase function for scattering at wavenumber η.  Φη(

! 

ˆ s 
i
,

! 

ˆ s ) gives the portion of incident radiation 
that is scattered into the direction corresponding to the angle between the incoming direction 

! 

ˆ s 
i
 and the 

outgoing direction of interest 

! 

ˆ s .  To determine the total increase in Iη in the direction 

! 

ˆ s  due to scattering, the 
portion of the radiant intensity from all Iη(

! 

ˆ s 
i
) that would be redirected into the direction 

! 

ˆ s  must be summed 
via the integral.  Φη is normalized so that 

 
meaning that all incoming radiation that is scattered goes out somewhere.  The difference between scattering and 
emission is that increase in I due to scattering is a result of the redirection of incoming radiation, whereas emission creates new 
radiation.  Note also that emission is isotropic, that is, the same in all directions, whereas scattering is direction-dependent.  In 
the special (and unrealistic) case of isotropic scattering, Φη(

! 

ˆ s 
i
,

! 

ˆ s ) = constant, and inspection of (9.18) shows 
that this constant must be 1. 
 
Radiation transfer equation 
 
Along a beam of radiation in the direction 

! 

ˆ s , the effects of emission, absorption and scattering can be 
combined to determine the total effect of all three on Iη: 
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which is called the radiative transfer equation, which is basically a statement conservation of radiant energy along 
a ray.  Here ωη is the albedo (ratio of scattering to extinction): 

 
Defining the source terms (for radiant intensity Iη): 

 
then (9.25) can be written in the simple form 

 

 
which has the solution 

 
Note that for a non-scattering medium, ωη = 0 and thus Sη = Ibη, which results in Eq. (9.13), which is a much 
simpler case than with scattering. 
 
Thus, solution of the radiative transfer equation boils down to evaluating the integrals in (9.29), which are 
integrals of the radiative source terms Sη between the location s = 0 (thus τη = 0, where the spectral intensity 
Iη(0) is known) and some other location of interest τη, with the weighting function e-(τη-τη‘), i.e., the importance 
of the source terms decays exponentially as the distance from the location of interest (τη-τη’) increases.  This 
integration is not as simple as it sounds since Sη depends on the temperature though Ibη (which may or may 
not be constant along the path) as well as the incident intensity from all directions Iη(

! 

ˆ s 
i
) at all points between 

0 and τη (which is generally unknown a priori and must be determined as part of the solution).  Thus, in general 
the intensity at every point depends on the intensity at every other point in the domain.  This is unlike most transport relations 
(e.g. the Navier-Stokes equations of fluid mechanics) that can be expressed in terms of local properties and their derivatives.  This 
makes radiative transfer in participating media very laborious in terms of the computational resources needed even when all of the 
physical property values are known.  About the only kind thing one can say about the radiative transfer equation is 
that it is linear and mathematically well behaved without nasty nonlinearities like the uj(∂ui/∂xj) terms in the 
Navier-Stokes equations that lead to shocks, turbulence, etc. 
 
Radiative internal energy and incident radiation function 
 
By analogy with gas molecules, the internal energy of radiation per unit wavenumber uη can be defined as the 
total intensity per unit wavenumber (energy per unit wavenumber per unit area per unit time) of radiation 
passing through a point divided by the speed (c) at which said energy passes through this point, leading to 

 
and thus the total radiant internal energy is 
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While Modest doesn’t mention it, inside of an isothermal volume surrounding by black surfaces, where Iη = 
Ibη for all solid angles Ω and integrating over all wavenumbers via equation PDR-1 and integrating over all 4π 
solid angles: 
 

ub = 4σT4/c        (PDR-2) 
 
Note that the units of u are Joules per m3.  At 300K, PDR-2 yields ub = 6.1 x 10-6 J/m3.  Just for fun, for a 
monatomic ideal gas, u = 3P/2 where P is the pressure (this independent of temperature since kinetic energy 
is proportional to temperature but density is inversely proportional to temperature, thus the two effects 
cancel out), thus u = 1.5 x 105 J/m3 at 1 atm, which is 2.45 x 1010 times larger than the radiant internal energy!  
For a monatomic ideal gas at 1 atm surrounded by black walls, radiant and gas internal energy would be equal 
at 119,000K, thus radiant internal energy can obviously be neglected except for solar, astrophysical and 
nuclear applications! 
 
A closely related property that is of more use for radiation calculations is the incident radiation function, which is 
the same as u but without the 1/c factor: 

 
 
Radiative heat flux 
 
Generally for engineering applications, rather than the intensity I along a particular ray we want to know the 
radiative heat flux q, i.e. the total radiation in a direction 

! 

ˆ s  normal to an imaginary plane, independent of what angle 
the incoming intensity passes through that plane.  To determine this we integrate the intensity I over all solid 
angles weighted by the angle between the incident rays and the plane: 

 
where the notation Iη(

! 

ˆ s )

! 

ˆ s  means the portion of the incident radiation Iη (which is coming from all directions 

! 

ˆ s 
i
 with respect to the direction 

! 

ˆ s  normal to the plane) that is in the direction 

! 

ˆ s .  I think better notation 
would be Iη(

! 

ˆ s 
i
)

! 

(ˆ s 
i
• ˆ s )ˆ s , which clearly means the component of the intensity coming from direction 

! 

ˆ s 
i
 

headed in the direction 

! 

ˆ s .  For an axisymmetric (or one-dimensional) system we can immediately integrate 
over all 2π azimuthal angles and write dΩ = 2πsin(θ)dθ, where θ is the angle between the incoming ray of 
direction 

! 

ˆ s 
i
 and the direction 

! 

ˆ s  normal to the plane (thus cos(θ) = 

! 

ˆ s 
i
• ˆ s .)  In this case it’s particularly easy to 

see the difference between G and q: 

! 

G = 2" I(#)sin(#)
0

"

$ d#;q = ˆ s 2" I(#)sin(#)
0

"

$ cos(#)d#    PDR-3 

Note that q is a vector like velocity whereas G is a scalar like internal energy.  With the substitution µ = 
cos(θ), the above equation can be written in the compact form for a one-dimensional problem 

      (14.33) (14.34). 
An important reason for determining the radiative heat flux q is to perform a radiative energy balance at a 
point, integrated over rays from all incoming directions, as opposed to along a ray (which leads to Equations 9.25, 9.27 
and 9.29).  Expressing radiative energy conservation at a point allows one to incorporate radiation as a source 
term in energy conservation equations including other modes of heat transport (Eq. 9.60 below).  This energy 
balance leads to, for a particular wavenumber, 
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or, for a gray medium (κη = constant), integrating over all wavenumbers from 0 to ∞: 

 
Equations 9.53 or 9.55 state that the divergence of the radiative flux (

! 

" #q) (which is the difference between 
the flux going out of an infinitesimal volume and that going into the volume, units Watts/m3) is increased by 
emission (the κ4σIbη term on the right hand side of Equations 9.53 or 9.55, which is the absorption 
coefficient multiplied by the blackbody intensity and integrated over all 4π steradians) and is decreased by 
absorption (the κG term, which is the total radiation incident on that volume multiplied by the absorption 
coefficient).  Scattering does not appear explicitly in Equations 9.53 or 9.55 because scattering does not 
change the radiant energy, scattering only redirects radiant energy.  Of course, the redistribution of radiant 
energy in the system via scattering will affect G. 
 
There can be a difference between the emission and absorption only when this difference is compensated by 
either (1) an increase or decrease in the temperature of the medium over time, i.e. ρCv(∂T/∂t), (2) heat 
transfer by other modes, i.e. conduction or convection, or (3) a heat source or sink within the volume (Q’’’).  
If the first two are absent, it is said that the system is at radiative equilibrium whereby 

 
(Of course, Eq. 9.62 also applies when Q’’’ = 0).  If other modes of heat transport and/or unsteadiness are 
present, then the divergence of radiative flux 

! 

" #q becomes a source/sink term in the more general relation 
for energy conservation including conduction and convection: 

 
which reduces to (9.62) if there is no conduction, convection or unsteadiness. 
 
The complete set of equations needed to describe radiative heat transfer in a participating media is given by 
 

1. The conservation of radiative energy at a point, Eq. 9.53 (spectral) or 9.55 (gray), which is a 
relationship between the heat flux vector q, temperature (through Ibη) and radiative intensity Iη from 
all incoming directions to that point. 

2. The conservation of radiative energy along rays coming into that point, Eq. (9.25) 
3. The coupling (if any) of radiative transport to other modes of heat transport and/or energy 

generation, Eq. (9.60) or (9.62). 
 
This is basically three equations for three unknowns, T, q and I, of which q and I may be used in integrated 
for a gray medium but in general must be applied for every wavenumber η.  T is of course a scalar (units: 
Kelvins), q is a vector (units: W/m2) and I is a scalar (units: W/m2).  The intensity I is the most problematic 
of the three since it is a function not only of the spatial position (like T and q) but also the solid angle Ω 
(unlike T and q). 
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Physics of radiating gases (Chapter 10) 
 
In order for a gas molecule to emit or absorb energy, it must change its state to a lower (for emission) or 
higher (for absorption) energy state.  In order to change its energy state, there must be a change in the 
translational, rotational, vibrational, or electronic energy levels of the molecule or some combination thereof.  
Quantum mechanics dictates that these energy levels are discrete, not continuous, and that only certain 
transitions between energy levels are possible.  Quantum mechanics also dictates that not all molecules may 
emit and absorb radiation; in particular homonuclear diatomic molecules like N2 and O2 cannot emit or 
absorb radiation, thus in combustion and atmospheric problems the primary radiating gases are CO2, H2O 
and to a lesser extent CO.  Because of the small size of gas molecules, scattering is negligible in gases except 
on very long length scales, e.g. in the atmosphere. 
 
The spacings of the translational energy levels are too small (that is, the spacings are much smaller than the 
thermal energy of the molecule = 3kT/2) to be of any consequence except at very low temperature (a few K).  
For radiation problems with gases from room temperature (300K) up to combustion temperatures (<3000K) 
the vast majority of radiant emission and absorption is due to changes in rotational and vibrational energy 
levels of the molecules.  Generally the spacings of vibrational energy levels are much larger than the rotational 
energy levels.  At still higher temperatures, characteristic of astrophysics, atmospheric reentry and electrical 
(e.g. spark) discharges, changes in electronic energy levels along with ionization and dissociation (or the 
opposite process of recombination) become important as well.  For transitions involving ionization, 
dissociation or recombination of the molecules, the ions or dissociated species being created or recombined 
may have any kinetic energy, thus for these transitions there is a continuous, not discrete emission/absorption 
spectrum. 
 
For the rotational and vibrational transitions, each allowable transition yields a line in the κη(η) spectrum 
(absorption coefficient κη as a function of wavenumber η) at η0 = ΔE/hc, where ΔE corresponds to the 
difference in energy levels before and after the transition.  Most of the radiation from gases occurs due to a 
single vibrational transition accompanied by a family of rotational transitions; this yields an emission-
absorption band such as that shown in Fig. 10-6.  For simple models of molecules (e.g. rigid rotor for 
rotational modes, harmonic oscillator for vibrational modes) it is possible to derive exact predictions for the 
energy levels, the allowable transitions between energy levels, the probability of transition and the number of 
molecules in each particular rotational and vibrational state.  However, because real molecules do not behave 
exactly this way and because of the coupling between modes, for real molecules, even simple ones like CO, 
CO2 and H2O, in practice one generally has to resort to experiments to determine the number of lines, their 
corresponding wavenumbers η0 and line strengths (S, defined below). 
 
The quantization of energy levels in molecules would suggest infinitely narrow lines (that is, no width in η 
space), but in fact the lines are broadened due to several factors including 
 
1. “Natural” broadening due to the “uncertainty principle” of quantum mechanics that prevents one from 

knowing precisely the energy of the photons emitted by the gas.  This broadening effect is small 
compared to the other two modes given below.  It has the same line shape as the collision broadening 
discussed below, so it is sometimes lumped together with collision broadening to form “Lorentz 
broadening.” 

2. “Collision” broadening, sometimes called “pressure broadening”, is due to (as advertised) collisions 
between molecules. This is the most important mechanism of broadening for most cases of interest 
except at very high temperatures and low pressures.  Collision broadening results in a line whose 
absorption coefficient κη varies with η according to 
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where η0 = ΔE/hc is the wavenumber corresponding to the center of the line and S is the “line strength” 
(units cm-2, or cm-2atm-1 or cm-2(kg/m3)-1) i.e. the absorption coefficient integrated over the small range 
of wavenumbers Δη corresponding to the absorption spectrum of this broadened line.  Also, bc is the 
“line width parameter” for collision broadening (units cm-1, i.e. line width in units of η): 

      (10.24) 
where D is the effective collision diameter for the molecules (typically a few Angstroms, e.g. 4 x 10-10 m 
for CO), p is the pressure, m is the molecular mass, k is Boltzman’s constant, T the temperature and c0 
the usual speed of light in a vacuum.  Equation (10.24 may be physically interpreted in the following way.  
All of the terms other than c0 as a group have units of s-1 and physically corresponds to the number of 
collisions between molecules per unit time (call this νc).  For CO at standard temperature and pressure, νc 
≈ 1.3 x 109/s.   In the absence of broadening, the radiation emitted or absorbed by this line would have a 
frequency of exactly ν0 = η0c0.  In the presence of collision broadening, the frequency would be 
broadened to ν0 ± νc, i.e. the beat frequencies obtained when signals of frequency ν0  and νc are mixed.  
The corresponding wavenumbers are (ν0 ± νc)/c0, thus the line width should be of the order νc/c0, which 
is exactly what Eq. (10.24) shows.  For CO at standard temperature and pressure, bc ≈ (1.3 x 109/s)/(3.0 
x 108 m/s) ≈ 4.4 m-1= 0.044 cm-1.  Another way of interpreting collision broadening is that during the 
small portion of time when the molecules are close enough to each other to affect each other’s energy 
levels, the molecule momentarily behaves somewhat more like a solid that emits and absorbs 
continuously across the spectrum due to the large number of degrees of freedom that the solid has as a 
result of the coupled motions of many molecules as opposed to the few degrees of freedom that an 
isolated gas molecule has. 
 
Since natural and Doppler broadening have the same functional form, bc in Eq. 10.23 may be replaced 
with the Lorenz line width bL = bc + bN, where bN is the (very small, almost always neglected) line width 
parameter for natural broadening.  (What is not neglected is the opportunity to increase confusion 
through terminology; many texts and papers refer to “Lorenz” broadening or “Lorenz” lines even when 
only the collision, not natural broadening part is included.) 
 

3. Doppler broadening, due to the motion of the molecules toward and away from the observer.  This is the 
same effect that causes sound emitted by a car to appear higher in frequency when the car is approaching, 
and lower when the car is going away.  In this case κη varies with η according to 

 
where in this case the line width bD is given by 

 
This can be interpreted physically as follows.  The term inside the square root is proportional to the 
sound speed cs. The Doppler frequency shift Δν = ν0cs/c0, and thus the wavenumber shift Δη is Δν/c0 = 
(ν0cs/c0)/c0 =  (ν0/c0)(cs/c0) = η0cs/c0 as Eq. (10.30) shows.  Note that, unlike collision broadening, the 
line width depends on the line center wavenumber ηo.  For CO at 300K, 1 atm and ηo = 1/4.7 µm = 
2130 cm-1 (where its strongest absorption band is located), Eq. (10.30) predicts bD = 0.0025 cm-1, which 
is 18 times smaller than the collision broadening width bc.  Since Doppler broadening line widths increase 
with T but are independent of P, whereas collision broadening line widths decrease with T and increase 
with P, Doppler broadening may be more important than collision broadening at high T and/or low P, 
e.g. in solar and plasma physics (high T) or atmospheric (low P) radiation.  Figure 10-6 shows the line 
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shapes for Doppler, Lorentz (collision + natural) 
and Voight (combined Doppler and Lorentz) 
broadened lines with the same b and S. 
 
It is important to note that while κη(η) changes 
due to broadening, the integrated line strength S 
generally does not; in other words, broadening 
effects redistribute the absorption over range of 
wavenumbers but does not generally change the 
total absorption capability of the line.  In 
particular, if S is expressed in units of cm-2atm-1, 
pressure will affect the line width through collision 
broadening and thus the profile of κη(η) (units cm-

2atm-1) but not S.  Temperature always affects line 
strengths because it changes the distribution of 
rotational and vibrational energy states of the 
molecules, thus the number of molecules in any 
given state, and thus the relative probability of any 
particular transition occurring, and thus the 
strength of any given line. 

 
For an individual line, with κη at a particular wavenumber η known from the broadening expressions given 
above, the increase or decrease in intensity along a ray of length s can be calculated using Eq. (9.13).  To get 
the effect of this line on the total intensity, Eq. (9.13) must be integrated over the entire line width Δη.  
(Technically the line width is infinite, but since κη tails off quickly on either side of the line center η0, one can 
truncate the integral over a few units of the line width parameter b.)  Since the line is narrow compared to the 
whole blackbody spectrum, over the entire line width Δη the blackbody intensity Ibη does not change 
significantly thus Ibη can be taken out of the integral.  For no scattering (σsη = 0, thus βη = κη) and assuming 
that κη does not vary along the path s (i.e. the gas is homogenous and isothermal) so that τη = κηs, Eq. (9.13) 
can be integrated over entire line width Δη to obtain 

 
where X is just the path length s if κη is in units of cm-1, X is sP if κη is in units of cm-1atm-1, or X is sρ, 
where ρ is the partial density of the gas of interest, if κη is in units of cm-1(kg/m3)-1.  The integral on the right 
hand side of Eq. (10.34 ) is called the equivalent line width (W): 

 
because physically it corresponds to the width Δη of a line of infinite absorption coefficient (thus emittance 
and absorptance of 1) across the entire line (κη → ∞ for ηo–W/2 < η < ηo+W/2, κη = 0 otherwise) with line 
that would have the same effect as the actual line.  In other words, the actual line is equivalent to a line that is 
“black” but only for wavenumbers corresponding to ηo–W/2 < η < ηo+W/2, not black across the entire 
wavenumber spectrum.  To see this, note that if κη → ∞, 1 – exp(-κηX) = 1 – 0 = 1, and if κη = 0, 1 – exp(-
κηX) = 1 – 1 = 0, thus ∫Δη{1-exp(-κηX)}dη = 1*W + 0*(Δη-W) = W. 
 
Equation (10.35) can be integrated over a Lorentz line profile (Eq. 10.23) with bL replacing bc to obtain 

 

Fig. 10.6 
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where In is the modified Bessel function of the nth 
kind and x = SX/2πbL is the dimensionless optical 
path length.  This plot is shown in Fig. PDR-1 (if 
you have the electronic version, you can double-
click the figure to open the Excel spreadsheet that 
generated the plot.)  W(x) is linear (W ~ x) at x << 
1 and has a square-root behavior (W ~ x1/2)  for x 
>> 1.  Note that Eq. (10.36) and Fig. PDR-1 are 
valid only for Lorenz line shapes; as previously 
mentioned this is the most important line shape (due 
to the collision broadening) for most engineering 
applications. 
 
Modeling of emission and absorption of gases 
with many lines 
 
As a net result of the inherent quantization of 
energy states plus line broadening, a plot of κη vs. η has sharp peaks (lines) with much lower values of κη 
between lines (e.g. Fig. 10-8).  As a result of collision broadening, the spectrum is much more “spiky” 
(narrower lines) at low pressures (Fig. 10-9, top) than at higher pressures (Fig. 10-9, middle), and is more 
spiky at high temperatures (Fig. 10-9, bottom.) 
 
Ultimately one wants to determine the effective emittance 

! 

"  of the gas through the integration of  (9.14) over 
the entire spectrum, e.g. 
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where in the last equality again it has been assumed that there is no scattering and the path length is 
homogeneous.  Relations such as (10.23) and (10.29)  provide κη(η) only for one individual line; to determine the physically 
observed κη(η) and the resulting 
radiant intensity I and effective 
emissivity, the individual contributions 
of all lines must be considered.  The 
difficulty arises because the 
“tails” of the lines overlap, 
particularly for Lorentz lines with 
slower decaying algebraic (bc/(η0-
η)2) tails than the exponential 
tails of Doppler lines.  Thus one 
cannot merely sum up the 
contributions of the individual 
lines to the total intensity using 
Eq. (10-36) with Eqs. (10.34) and 
(10-35).  This overlapping 
character of the lines is readily 
seen in Fig. 10-9.  Evaluating the 
emission and absorption due to 
each individual line (Eq. 10.36) is 
usually implausible (except to 
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calibrate simplified models) since there 
are about 1 million known lines each for 
H2O and CO2! 
 
As a result, one resorts to either (1) 
narrow band, (2) wide band or (3) global 
models.  (1) – (3) represent models of 
decreasing complexity and of course 
decreasing accuracy and flexibility. 
 
Narrow-band models break up the 
entire spectrum into a number of 
individual bands, each band corresponding 
to a range of wavenumbers (Δηband) that is 
much larger than the line width (bL or bD) 
and large enough that there will be many lines 
within the band, but still Δηband is small 
enough that the spectral blackbody intensity 
Ibη can be assumed constant over the band.  
Over each narrow band, every line is 
assumed to have the same broadening 
parameter bL or bD and is assumed to 
follow the same broadening function 
(Lorenz or Doppler).  A particular 
distribution of line center 
wavenumbers η0 and line strengths S 
are assumed.  In some models (e.g. 
Elsasser, Fig. 10-10, left) the spacing 
between lines and line strength are 
assumed constant, whereas in other 
models, called statistical narrow band 
models, the lines are assumed to be 
randomly distributed across the band 
and have randomly distributed 
strengths that follow a presumed 
probability distribution function (Fig. 
10-10, right).  In the case of the 
popular Malkmus model, this probability distribution is p(S) = S-1exp(-S/

! 

S ), where 

! 

S  is an average line 
strength.  The combined effect of all these individual lines is then summed to obtain the effective emissivity 
for each range of wavenumbers Δηband.  The first step in doing this is determining κη(η) across the entire 
narrow band due to the effect of all the lines, each with its own individual κη(η).  Then Eq. (PDR-4) is 
integrated across Δηband to get the effective emittance for the band.  For the Elsasser model this leads to 

 
where β = πbL/d is the ratio of line width (bL) to line spacing (d).  For the Malkmus model this leads to 
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Fig. 10-9 
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where τ = 2βx.  The predictions of four models are shown in Fig. 10-11 in terms of the effect of the 
dimensionless optical depth τ.  Note that  

1. For very small τ, the emissivity approaches zero 
2. For large τ, the emissivity approaches one 
3. For large β, that is, very strong narrow lines without overlap, all models yield the same emissivity, 

and for τ = 1, this emissivity is 0.63 = 1 – e-1. 
4. The Elsasser model gives the most emissivity, i.e. the least transmissivity, because the lines are equally 

spaced so there are fewer “holes” in the spectra where lines overlap. 

 
τ = 2βx = 

! 

S X/d 
 
Of course this still begs the question of how to determine the appropriate values of the key parameters bL 
(Lorentz line width), S (line strength) and d (mean line spacing) for real gases.  Probably the most commonly 
used data set for CO, CO2 and H2O is that by A. Soufiani and J. Taine (Int. J. Heat Mass Trans. Vol. 40, pp. 
987-991 (1997)).  In this work the line widths as a function of temperature, pressure and mole fractions are 
given by empirical formulas (which are independent of wavenumber η), and the effective line strengths and 
lines spacings are given in tables, one table for each gas which gives the effective line strength and line 
spacing as a function of η and temperature (T) over the range 150 cm-1 < η < 9300 cm-1 and 300K < T < 
2500K in intervals of 25 cm-1 and 200 K, respectively.  Thus each of the 3 gases has (9300 – 150)/25 + 1 = 
367 data points in spectral space and (2500 – 300)/200 = 12 points in temperature space, for a grand total of 
367 (wavenumbers) x 12 (temperatures) x 2 (properties) x 3 (gases) = 26,424 individual values.  These data 
were obtained using the “HITRAN” spectral data base for these gases, which attempts to catalog the millions 
of individual spectral lines. 

Fig. 10-11 


