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This paper is a continuation of our work on edge-flames in premixed combustion. An edge-flame is a
two-dimensional structure constructed from a one-dimensional configuration that has two stable solutions
(bistable equilibrium). Edge-flames can display wavelike behavior, advancing as ignition fronts or retreating
as failure waves. Here we consider two one-dimensional configurations: twin deflagrations in a straining
flow generated by the counterflow of fresh streams of mixture; and a single deflagration subject to radiation
losses. The edge-flames constructed from the first configuration have positive or negative speeds, according
to the value of the strain rate. But our numerical solutions strongly suggest that only positive speeds
(corresponding to ignition fronts) can exist for the second configuration. We show that this phenomenon
can also occur in diffusion flames when the Lewis numbers are small. And we discuss the asymptotics of
the one-dimensional twin deflagration configuration, an overlooked problem from the 70s.

Introduction

An edge-flame can be defined, roughly speaking,
as a flame sheet with an edge. There is a growing
literature on edge-flames in non-premixed combus-
tion (e.g., Ref. [1]) reflecting their important role. A
flame spreading over a fuel bed, solid or liquid, will
have an edge; edge flames are an important part of
the structure of the combustion field that occurs in
the burning of heterogeneous solid propellants [2];
they are a noticeable characteristic of candle flames
under microgravity conditions [3]; and they must ex-
ist whenever a hole is torn in a flame-sheet by tur-
bulent eddies, so that their behavior is relevant to
the problem of lifted turbulent diffusion flames
[4,5]. Important theoretical work has been pio-
neered by Dold and coworkers [6,7].

Edge-flames in premixed combustion have been
less well studied. Indeed, there appears to be only a
single theoretical treatment [8] and a single explicit
experimental study [9]. Old experimental evidence
of their existence [10] is noted in Ref. [8]. The pres-
ent paper is a sequel to Ref. [8] and examines pre-
mixed edge-flames in two hitherto unexamined con-
figurations.

A simple framework in which edge-flames can be
constructed proceeds in the following fashion: There
are certain one-dimensional combustion systems,
dependent on a spatial variable x, say, for which
there are multiple solutions. Of particular interest
are bistable systems for which there are three solu-
tions, two stable and one unstable, the counterflow

diffusion flame being a well-known example. Sup-
pose the weakest (strongest) of the stable solutions
has a temperature distribution T1(x) [T2(x)]. T1(x)
will often correspond to a quenched state, or a close
approximation thereof, with values close to some
background or supply temperature Tf. The maxi-
mum value of T2(x) will be close to a flame-tem-
perature (e.g., the adiabatic flame-temperature or
the Burke–Schumann flame-temperature). An un-
steady two-dimensional combustion field can then
be defined by an initial-value problem in the x 1 z
plane, where the boundary conditions in x are those
for the one-dimensional problem, and

T(x, z, t) → T (x), T (x) as z → ``, 1` (1)2 1

If T2(x) is associated with a single thin reaction zone
(flame-sheet) and T1(x) is associated with negligible
reaction, an edge-flame is defined and the edge-
flame structure either moves in the direction of de-
creasing z, in which case we call it an ignition front,
or moves in the direction of increasing z, in which
case we call it a failure wave. Here we continue the
discussion of ignition fronts and failure waves in the
premixed context. We discuss the situation where
the one-dimensional problem is defined by a twin-
flame counterflow, and we also discuss a deflagration
in which multiple solutions arise because of radiation
losses. Some related results on diffusion flames are
briefly discussed, as is the asymptotic description of
quenching for the twin-flame problem. As the latter
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Fig. 1. Variations of maximum temperature with Dam-
köhler number for twin counterflow flames: E, exact; E1,
first-order approximation of exact solution; A, solution of
the autonomous equation A10; A1, (A19), 1 term in q; A2,
(A19), 2 terms in q; B, (A20).

will only be of interest to the asymptotics commu-
nity, it is relegated to the Appendix.

This work and Ref. [8] are parts of the dissertation
of Vedarajan [11].

The Twin-Flame Counterflow Problem

Consider a symmetric counterflow of fresh mix-
ture that, in general, supports twin flames. This con-
figuration has long been studied, both theoretically
and experimentally.

A simple model suitable for our purposes starts
with the equation

11 2 21qaxd/dx(C T, Y) 4 kC d /dx (C T, Y)p p p

1E/RT` BY e (Q, 1 1) (2)

where a is the rate of strain and we have assumed
that the Lewis number is 1. The supply conditions
are

|x| → ` T → T , Y → Y (3)f f

If DTa [ QYf /Cp is used as a reference temperature,
and

l [ k/qC a!c p

is used as a reference length, a single nondimen-
sional equation can be deduced, namely,

1h/T1xT 4 T ` D(1 ` T 1 T)e , (4)x xx f

D 4 B/qa, h 4 E/RDTa

Because of the symmetry, it is sufficient to solve this
equation in x . 0 with the boundary conditions

T (0) 4 0, T(`) 4 T (5)x f

Note that within a context that resolves the cold-
boundary difficulty (e.g., a cutoff temperature), the

system of equations 4 and 5 has a stable quenched
solution in which T 4 Tf everywhere. In addition, it
is well known that for D greater than some minimum
value Dmin, there are two solutions. These can be
characterized by the maximum value of T (Tmax), and
a representative response, obtained numerically, is
shown as a solid line in Fig. 1 (curve E). Here Tf 4
0.2, Ta [ 1 ` Tf 4 1.2, and h 4 16, values adopted
throughout the paper. The upper branch corre-
sponds to stable solutions, and it is these, along with
the quenched solutions, that are the key ingredients
of the unsteady two-dimensional problem described
in general terms in the Introduction. We are par-
ticularly concerned with solutions for values of D
close to Dmin.

As an aside, not part of the main thrust of our
discussion, we note that there have been asymptotic
treatments of the system of equations 2 and 3 in lieu
of a numerical strategy, but there are ingredients
that have not been discussed before, and we de-
scribe these in the Appendix.

Failure Waves and Ignition Waves

In this section, we use the strategy described in
the Introduction to define a two-dimensional un-
steady problem with T2(x) defined by a point on the
upper branch of Fig. 1 (curve E) and T1(x) [ Tf, the
quenched state. The appropriate generalization of
equation 4 is

1h/TT 1 xT 4 T ` T ` D(T 1 T)e (6)t x xx zz a

now accounting for diffusion in the z direction as
well as in the x direction.

Note that as |z| → `, where Tzz → 0, equation 6
reduces to the one-dimensional form (equation 4),
and the solution T2(x) can be assigned as z → ``,
the solution T1(x) [ Tf as z → 1`. (Note the remark
following equation 5.) Boundary conditions in x are
those for the one-dimensional problem, namely,
equation 5. And initial conditions, whose precise
form is not important, are defined by a simple
smooth interpolation between T1 and T2.

Figure 2a shows an initial temperature profile.
Note that at z 4 15, it is T1 [ Tf, and at z 4 `15,
it is T2(x), the one-dimensional twin-flame configu-
ration. The Damköhler number is 4.9 2 107 and the
flame sheets are merged together, because we are
close to Dmin. Figure 2b shows the profile at a later
time, and it is clear that the structure is retreating,
corresponding to a failure wave.

In view of the double-flame structure, it might be
argued that the use of the rubric “edge-flame” is not
appropriate, but the behavior revealed here has its
counterpart in the edge-flames discussed in Ref. [8],
where the single-flame counterflow problem is ex-
amined (fresh versus inert counterflow).

If a is decreased (D increased), it is possible to
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Fig. 2. Temperature profiles of a failure wave D 4 4.9 2 107: (a) t 4 0; (b) t 4 4.5.

Fig. 3. Reaction-rate contours of an ignition front D 4

1.1 2 108, t 4 4.5. Values are {0.5, 1.0, 3.0, 5.0, 5.0, 3.0,
1.0, 0.5}.

Fig. 4. Variations of wave speed (edge speed) with Da-
mköhler number, twin flames.

get an ignition front, and Fig. 3 shows reaction-rate
contours in such a case. Steepening of the leading
(lower edge) portion of the flame is quite apparent.
Here (and also for the failure wave) the front is of
unchanging shape following the passage of initial
transients.

By performing a number of calculations for dif-
ferent values of D, it is possible to construct a graph
showing variations of the front speed V with D (Fig.
4). Here

11V 4 (ż) S (7)`

where (ż)` is the dimensional front speed and S is
the adiabatic flame speed defined by the system. The
quenching value of D (Dmin) is 4.802 2 107, and for
values of D between Dmin and D0 (9.776 2 107), the
front speed is negative. But for values of D greater
than D0, the front speed is positive. The significance
of results such as these, both in the present context
and in the single-flame context of Ref. [8], is that
flames can experience two distinct types of quench-
ing: global quenching, arising when D is reduced
below the value Dmin; and quenching if part of the
flame has been destroyed and Dmin , D , D0 so
that a failure wave enlarges the region of destruction.

Results such as these and the one-dimensional an-
alog discussed in Ref. [8] suggest that the basic in-
gredients we have included here—multivaluedness,
quenching—will always lead to the dichotomy of
positive and negative speeds for the two-dimensional
structure. That this is not the case is shown by the
example discussed in the next section.

Multivaluedness Due to Radiation Losses

Consider the equation for a plane deflagration, ra-
diation losses included,

1E/RTMC T 4 kT ` BQYe 1 q- (8)p x xx

3 3q- 4 10 MWP (Y 1 Y)(T 1 T ) W/matm f f

where is the mean molecular weight, Patm is theMW
total pressure in atmospheres, and T is the tempera-
ture in degrees Kelvin. We suppose that Y represents
methane and the radiating species are CO2 and H2O,
whose concentrations are proportional to (Yf 1 Y).
There is a corresponding equation for Y (cf. equation
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Fig. 5. Variations of flame temperature with equivalence
ratio for a deflagration with radiation losses.

Fig. 7. Temperature contours for an ignition front with
radiation losses, f 4 0.53556. Values are {1.5, 2.0, 2.5, 3.0,
3.5, 4.0}.

Fig. 6. An ignition front in a flame with radiation losses, f 4 0.53556.

2). The expression for q- is derived by first con-
structing an accurate representation of the tempera-
ture dependence of the band radiation for each spe-
cies and then fitting this with a straight line, a
surprisingly reasonable approximation up to a tem-
perature of 1800 K. All other parameters are chosen
so that the model provides a reasonable approxi-
mation of methane/air flames in the neighborhood
of the lean limit. The goals are only qualitative, but
we do not wish to be led astray by gross quantitative
inaccuracies.

Now the system of which equation 8 is a part de-
fines, in addition to the quenched solution T 4 Tf,
Y 4 Yf, dual solutions for values of Yf greater than

the radiation-defined inflammability limit Yf 4
0.02945 (equivalence ratio f 4 0.5355): See Fig. 5,
the upper branch of which corresponds to stable so-
lutions. Thus we can construct a two-dimensional
unsteady combustion field (an edge-flame), and Fig.
6 shows an ignition wave for f 4 0.53556, a value
close to the limit. Temperature and reaction-rate
contours are shown in Figs. 7 and 8. The wave is
quite thick because the temperature decay occurs on
a scale that is much larger than the preheat-
zone thickness. Figure 9a shows variations of the
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Fig. 8. Reaction-rate contours for an ignition front with
radiation losses, f 4 0.53556. Values are {0.04, 0.1, 0.3,
0.4}.

Fig. 9. Non-negative edge speeds:
(a) deflagration with radiation losses
and (b) symmetric diffusion counter-
flow configuration, LeX 4 LeY 4

0.3.

edge speed with f, results which strongly suggest
that negative speeds do not occur. Thus the limit
equivalence ratio is 0.5355, and yet at an equivalence
ratio f of 0.53556, the edge speed is positive with a
value of approximately 0.3555. Of course, it is not
possible to reduce f arbitrarily close to the limit in
a finite number of calculations, but it seems unlikely,
when Fig. 9a is examined, that anything but positive
speeds can be achieved.

Conclusions

In this paper, we have examined two examples of
edge flames (but note the remark following equation
6) that can arise when the reactants are premixed.
The results for the symmetric (twin-flame) counter-
flow configuration are similar to those of the single-
flame configuration examined in Ref. [8]. These can
be summarized by the observation that if a hole is
torn in such a flame, it will get larger or smaller,
depending on the value of the straining rate. This is

also a characteristic of existing results when the un-
derlying one-dimensional flame is a diffusion flame
(e.g., Ref. [1]).

On the other hand, if a hole is torn in a flame
subject to radiation losses, the hole will heal no mat-
ter how close the equivalence ratio is to the limit
value. It is natural to wonder if robust flames of this
nature can occur in the counterflow configuration if
the Lewis number is different from 1, and although
we have no results of this nature for premixed
flames, we have uncovered robust edges in the case
of diffusion flames. Figure 9b shows variations of
edge speed versus Damköhler number when the un-
derlying one-dimensional flame is defined by a sim-
ple symmetric counterflow configuration (1:1 stoi-
chiometry, both Lewis numbers equal to 0.3), and
negative speeds are not obtained. However, this
might not be a commonly realizable phenomenon.
In examining edge-flames constructed from the S-
shaped response of the Kirkby–Schmitz configura-
tion [12] (flux conditions for the fuel applied to one
boundary, Dirichlet conditions for the oxidizer ap-
plied at the other), for a variety of parameter choices,
we have failed to identify robust edges even for
Lewis numbers as small as 0.2.

Clearly, the results presented here and in Ref. [8]
could have relevance to the behavior of turbulent
premixed flames in the laminar flamelet regime, par-
ticularly where the response of turbulent flame
speed to turbulent intensity “bends.”

Appendix
Asymptotic Solution of the One-Dimensional

Counterflow Problem

Here we briefly discuss the system of equations 4
and 5 in the asymptotic limit h → `; there are in-
gredients that have not been discussed before. In the
limit, reaction is confined to a flame sheet located at
x 4 x*, and if x* ? 0, we have, to first order,
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0 # x , x T 4 1 ` T [ T , Y 4 0; (A1)f a*

x . x T 1 T 4 1 1 Y/Yf f*

4 erfc(x/ 2)/erfc(x / 2)! !*

The usual flame-sheet analysis determines the gra-
dient on the unburned side of the flame,

11 4 12 1h/T 1/2aY Y (x ` 0) 4 [2DT h e ]f x a*

1/2 ˜4 {S[qC /ak] } [ S (A2)p `

where S is the adiabatic flame speed defined by the
system. (The label ()` is used to denote a quantity
that is expressed in terms of dimensional variables.)
Matching with the gradient of equation A1(b) then
yields a formula for x*,

21x /2 ˜2/pe /erfc(x / 2) 4 S (A3)*! !*

and from this, we can deduce variations of x̃* with
S̃, where

11 ˜x̃ 4 {SqC k x } 4 x S (A4)p `* * *

is a nondimensional flame-sheet location that is not
scaled with a. x̃* decreases monotonically with in-
creasing a, reaching the value 0 when S̃12(;a) 4
p/2, a well-known result (e.g., Ref. [13]). For these
solutions, the maximum temperature remains fixed
at Ta 4 1 ` Tf.

There is also a solution for which x* 4 0 and the
flame temperature T* is within O(1/h) of Ta. Then,
to first order,

x . 0 T 4 T ` erfc(x/ 2) (A5)!f

Within the reaction zone, the variables are t, n where

11 11T 4 T (1 ` h T t), x 4 h n (A6)a a

whence

12 1h/T tat 4 Dh e te (A7)nn

t 4 t , t 4 0 at n 4 0n*

Here t* defines the flame temperature, a quantity to
be determined.

A single integration leads to

2 12 1h/Ta(t ) 4 2Dh e [p(t ) 1 p(t)],n *

tp(t) [ e (1 1 t) (A8)

which imposes the requirement t # t* , 0, a range
in which p is an increasing function. Matching be-
tween the gradients defined by equations A5 and A8
(x → 0, t → 1`) then leads to a formula for t*,
namely,

11 12˜p(t ) 4 2p S (A9)*

defined for S̃12 , p/2. This branch, with infinite
slope at S̃12 4 p/2, is drawn in Fig. 1 (curve E1)
along with the upper branch T* 4 Ta (t* 4 0) iden-
tified earlier when x* ? 0. Thus the asymptotics pre-
dicts a turning point (quenching point) in the re-
sponse, but only provides a first-order estimate of its
location (T* 4 Ta, S̃12 4 p/2), and not a very ac-
curate one at that.

A refinement of this description can only come
from a higher-order analysis, and in this connection,
we rewrite equation 4 in the form

2x 1h/TT ` (p/2)De (T 1 T)e 4 0,ss a

s 4 erf(x/ 2) (A10)!
Now the turning point can only be generated when
at least the exponential tail of the temperature per-
turbation within the reaction zone interacts with the
symmetry plane x 4 0. The natural assumption is
that x* 4 O(lnh/h) when this occurs, corresponding
to e1kn 4 O(1/h) for some k. Then we can approx-
imate by 1, and that this is a poor approximation2xe
beyond the reaction zone is obviously of no concern.
Equation A10 can then be integrated using the
boundary conditions

T 4 0, T 4 T at s 4 0 (A11)s *

to yield

T

11/2# dT [h(1h/T ) 1 h(1h/T)]T **

4 1 phD.s (A12)!

1
11 t 12 th(t) [ h[E (t) 1 t e 1 t e ]i2

11 t` T [E (t) 1 t e ]a i

where Ei(x) 4 dt t11et is the exponential inte-x*1`

gral. Equation A12(a), with s 4 1 (x 4 `), T 4 Tf,
is an implicit formula for T*(D), and this function is
also plotted in Fig. 1 (curve A). It is a decent ap-
proximation to the exact solution.

If the problem implicit in Equations A5–A7 is ex-
amined to the next order, in an attempt to calculate
a better approximation to the flame-temperature for
the wall flame, that is, t* 4 t*1 ` h11t*2, it is not
difficult to show that t*2 → ` as t*1 → 0, with t*2t*1
→ const., give or take logarithmic terms. (Second-
order flame-sheet theory is seldom required in our
subject, but a detailed example is presented in Ref.
[14].) Thus the erstwhile 1/h2 term in T* is com-
parable to the 1/h term if t*1 4 O(1/ ), corre-h!
sponding to an O(1/h ) deviation from Ta. Theh!
turning point is characterized by this scale.
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Consider the simplified (autonomous) version of
Equation A10, with the variables of equation A6.
Then if the exponential is expanded,

2 2 t 11 3 t˜d t/dn 4 D[te 1 T h t e ` . . .],a

12 1h/T˜ aD [ (p/2)Dh e (A13)

Defining

t
t 11 3 tq(t) 4 1 dt[te 1 T h t e ` . . .] (A14)a#

1`

(then p(t) is the first approximation), the solution of
equation A13 satisfying the boundary conditions
equation A7(b) is

t
11/2 ˜dt [q(t ) 1 q(t)] 4 1 2D.n (A15)!# *t

*

with large-n behavior

t
*˜t ; 1 2Dq(t )n ` t ` dt 2! #* * 1`

11/2{[1 1 q(t)/q(t )] 1 1} ` e.s.t. (A16)*

Beyond the reaction zone,

T 4 0 (A17)ss

with solution

T 4 A(h)s ` T 1 A(h) (A18)f

to satisfy the boundary condition at s 4 1, where
A(h) is a constant.

We now equate T as defined by A16 with A18
(matching to all orders) so that A 4 2 ˜1T 2Dq(t )!a *
and

2 2 11˜T 2Dq(t ) 4 (T 1 T ) ` T h 2!a a f a*
t
* 11/2[t ` dt{[1 1 q(t)/q(t )] 1 1}] (A19)#* *1`

a formula that describes variations of the flame tem-
perature with the Damköhler number. Within the
context of the autonomous problem, equation A19
is valid to all algebraic orders since an arbitrary num-
ber of terms can be retained in q.

When only the first term in q(t) is retained [the
term that is nominally O(1)], the error in t is O(1/h),
small compared to 1/ , and the turning point is cap-h!
tured, Fig. 1 (curve A1). Retaining two terms in q(t)
gives a better approximation, also shown in Fig. 1
(curve A2).

The term proportional to h11 in A19 plays a crucial
role in defining the turning point; for at all orders,
q8(0) 4 0 so that the integral is logarithmically sin-
gular as t* → 0. (That all terms in the expansion of
q (equation A14) have a zero derivative at the origin
means that the expansion of each q-dependent term
in A19 for large h is uniformly valid in t*, further

justification for the validity of replacing q by its first
approximation.) Indeed, for small t* and only the
first approximation for q, A19 can be approxi-
mated by

2 2 11˜T 2Dq(t ) ; (T 1 T ) ` T h 2!a a f a*

[1 2 ln(1t ) ` 1.34992 . . .] (A20)! *

see Fig. 1 (curve B). The derivative of A20 is ap-
proximately

˜ ˜ ˜(11/2) 2Dt ` (1/ 2D)dD/dt! !* *

; 1 2/(ht ) (A21)! *

which explicitly shows that in the immediate neigh-
borhood of the turning point t* is O(1/ ).h!

A final note. The formula A16 may be used to
provide a measure of the overall thickness of the
reaction zone (bounded on the left by the symmetry
plane). The displacement effect can be calculated by
finding the value of n for which the linear variation
of t, extrapolated to small n, defines a value of t equal
to t*. Thus,

2 11n ; T (T 1 T ) 2a a f*

[1 2 ln(1t ) ` 1.34992 . . .] (A22)! *

which is O(ln h) when t* is O(1/ ). Recall the re-h!
marks following equation A10.
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COMMENTS

J. Chomiak, Chalmers University of Technology, Swe-

den. Your edge-flames are often curved. I wonder what is
the mechanism of the branching phenomenon and how the
branching affects the speed of the flames?

Author’s Reply. The fresh/fresh counterflow edge-flame
is horseshoe shaped, which is what one would expect. As
for the edge-flame constructed from a deflagration with
heat losses, it has only two choices: to be straight or curved,
and in a two-dimensional asymmetric combustion field, it
would be surprising if it were straight. The same can be
said for our previous example of a premixed edge-flame,
the one generated in a fresh/inert counterflow (Ref. [8] in
the paper). The most obvious effect of edge curvature on
the propagation speed occurs when the Lewis number (Le)
is different from 1, and we will report results for premixed
flames in this case elsewhere. As we briefly note for dif-
fusion edge-flames, small values of Le lead to enhanced
reaction near the edge, and the edge-speed remains posi-
tive all the way to the 1-D quenching point. Indeed, edge
advancement is possible beyond the 1-D quenching point:
the edge trails cellular structures, sublimit flames—obvi-
ously, it can not trail a 1-D flame. This can also happen for
the deflagration-with-heat-losses problem, even if Le 4 1,
for reasons that we discuss elsewhere.

●

Robert Pitz, Vanderbilt University, USA. Do you expect
substantial differences in your conclusions if more complex
chemistry is employed in your analysis?

Author’s Reply. No. The essential characteristics of un-
bounded edge-flames—well defined waves that can travel
with positive or negative speeds, depending on the Da-
mköhler number—have their roots in the fact that the un-
derlying 1-D problem has two stable solutions. Whether
the 1-D configuration is a diffusion flame or a premixed
flame is a mere detail, as is the chemistry. Premixed failure
waves (edge-flames with negative speeds) have, we believe,
been seen in the sublimit failure of upward propagating
methane–air flames in a standard inflammability tube, as
we note in (Ref. [8] in the paper). Ronney has recently
been able to establish stationary premixed edge-flames in
his laboratory, and his observations are consistent with the-
ory. These are analog-computer simulations with full chem-
istry. We can safely say that there are three, not two, basic
flames in combustion: diffusion flames, deflagrations, and
edge-flames.
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