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Liftoff Characteristics of Turbulent Jet Diffusion Flames

Norbert Peters*
Rheinisch- Westfdlische Technischen Hochschule in Aachen, Aachen, FRG

and
Forman A. Williamst

Princeton University, Princeton, New Jersey

A theoretical analysis of turbulent jet diffusion flames is developed in which the flame is regarded as an en-
semble of laminar diffusion flamelets that are highly distorted. The flow inhomogeneities are considered to be
sufficiently strong to produce local quenching events for flamelets as a consequence of excessive flame stretch.
The condition for flamelet extinction is derived in terms of the instantaneous scalar dissipation rate, which is
ascribed a log-normal distribution. Percolation theory for a random network of stoichiometric sheets is used to
predict quenching thresholds that define liftoff heights. Predictions are shown to be in reasonably satisfactory
agreement with experimentally measured liftoff heights of methane jet diffusion flames, within experimental
uncertainties.

I. Introduction

FUEL issuing from a tube or duct into an oxidizing at-
mosphere forms a jet in which combustion may occur.

The associated combustion process is the most classical
example of a diffusion flame. At sufficiently high velocities of
fuel flow (fundamentally, at sufficiently large Reynolds
numbers) the entire diffusion flame is turbulent. The tur-
bulent jet diffusion flame begins at the mouth of the duct for
a range of values of the exit velocity. When a critical exit
velocity is exceeded, the flame abruptly is detached from the
duct and acquires a new configuration of stabilization in
which combustion begins a number of duct diameters
downstream. Flames in this state, stabilized in the mixing
region, are termed lifted diffusion flames, and the critical exit
velocity at which they appear is called the liftoff velocity.

The liftoff height is the centerline distance from the duct
exit to the plane of flame stabilization. A further increase in
the exit velocity increases the liftoff height without
significantly modifying the turbulent flame height (the
centerline distance from the duct exit to the plane at which, on
the average, combustion ceases). There is a second critical
value of the exit velocity, called the blowoff velocity, beyond
which the flame cannot be stabilized in the mixing region. The
present study addresses questions of the structure of lifted
turbulent diffusion flames at exit velocities between liftoff
and blowoff values. Attention is focused especially on the
calculation of liftoff heights.

Liftoff characteristics for turbulent jet diffusion flames are
of practical importance in connection with flame
stabilization. Conditions for liftoff and blowoff must be
known in developing rational designs of burners, e.g., in
diffusion-flame combustors for power production or in
flaring applications for the petroleum industry. They are also
of interest in connection with extinguishment of certain fires
that may occur in oil or gas rigs. The present work is directed
toward developing an improved fundamental understanding
of liftoff phenomena that may later prove useful for these
applications.
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The early studies of turbulent diffusion flames recognized
the existence of liftoff and blowoff1 but were focused instead
on flame heights. Often only blowoff velocities were reported
along with flame heights, no mention being made of liftoff.2

Recently some relatively detailed data on liftoff velocities and
liftoff heights have been generated3 for methane and
methane-hydrogen jets in air. These data afford a basis for
comparison with predictions and will be employed herein for
that purpose.

II. Theoretical Concepts of Lifted Flames
A popular view of liftoff and blowoff phenomena treats

diffusion flames as if they were premixed flames.4'5 A
characteristic of premixed flames is the existence of a flame
velocity at which the flame propagates with respect to the
unburnt mixture. In the diffusion flame mixing is considered
to occur prior to onset of combustion, and the base of the
diffusion flame is assumed to be stabilized by propagation of
a premixed flame into the mixture.

This view is convenient for predicting liftoff heights and
blowoff velocities. Under turbulent conditions, turbulent
mixing is calculated without combustion to obtain local
average values for the mixture ratio, the flow velocity, and the
turbulence intensity and scale. Knowledge of the mixture
ratio, intensity, and scale provides a turbulent burning
velocity from measurements on premixed flames. Near the
duct exit .the average flow velocity everywhere exceeds the
turbulent burning velocity. Farther downstream a position is
reached at which these two velocities become equal at an
optimum transverse location. This position defines the liftoff
height. Increasing the jet exit velocity increases the local
average flow velocity and thereby causes the liftoff height to
increase. At sufficiently high exit velocities the stabilization
plane is so far downstream that the average composition
becomes fuel-lean across the entire jet, and the turbulent
burning velocity begins to decrease sharply. Blowoff is then
encountered as a consequence of either inability to satisfy
equality of velocities or attainment of a lean flammability
limit.

In relating conditions of lifted diffusion flames to those of
premixed flames this view implicitly considers mixing to have
occurred to the molecular level, since premixed turbulent
flame-speed data are available only for gases of spatially and
temporally uniform mixture ratios. It is possible to estimate
whether sufficient time is available to a fluid element in lifted
diffusion flames for its turbulent mixing to approach local
uniformity prior to reaching the flame. Typical liftoff heights
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range from 3 to 30 cm as the exit velocity varies from 10 to 60
m/s.3 Residence times for fuel elements prior to encountering
flames therefore lie between 1 and 5 ms. Since molecular
diffusion coefficients are on the order of 10~ l crnVs in the
cold fuel jet, the characteristic distances over which molecules
can diffuse in the time available are in the vicinity of 10 ~2 cm.
Since exit diameters are on the order of a few millimeters
under these conditions,3 turbulence Reynolds numbers R
(based on fluctuating velocity and integral scale), may be
estimated to range up to 103, and turbulence scales will vary
from a maximum eddy size f on the order of 1 cm to a
Kolmogorov scale of V / R 3 / 4 ~ I Q - 2 cm. Thus, in the time
available, negligible molecular diffusion occurs through the
largest eddies and perhaps from 50 to 90% through the
smallest. It seems unlikely that a sufficient amount of
premixing at the molecular scale can occur to justify use of the
premixed-flame concept. In our view, the range of validity of
the premixed-flame concept remains an open question; it is
well known that observed blue flame zones and radical
emissions, with negligible yellow radiation, do not constitute
evidence for premixed flames, since they occur as well for
stretched diffusion flames (see Ref. 19).
v An alternative concept, proposed by Peters,6 focuses on
extinction of laminar diffusion flames. The turbulent dif-
fusion flame is viewed as an ensemble of laminar diffusion
flamelets, reaction sheets stretched and contorted by the
turbulent flow. It is known7 that if the strain rate imposed on
a laminar diffusion flame exceeds a critical value then
reaction abruptly ceases in the flame and extinguishment
occurs. The peak in the spectrum of strain rates in the tur-
bulent flow shifts to higher values as the exit velocity of the
fuel jet increases. For an attached turbulent diffusion flame
this increase may lead to a sufficiently large fraction of ex-
tinctions of laminar diffusion flamelets at the rim for liftoff
to occur. After liftoff, the turbulence of the cold jet at the exit
has a higher Reynolds number and correspondingly higher
strain rates. However, at a sufficiently large distance
downstream from the exit, the peak in the spectrum of strain
rates has decreased to a value that allows a reasonable
fraction of the laminar diffusion flamelets to remain unex-
tinguished. The diffusion flamelets may therefore remain
stabilized in a lifted configuration, with a liftoff height that
increases as the exit velocity increases.

In this alternative view, any effects of premixing at the
molecular level are neglected, although of course time-average
concentrations will exhibit an apparent mixing through
turbulence. The laminar diffusion flamelets occur at local,
instantaneous stoichiometric surfaces. At the-liftoff height
most of these surfaces are located away from the jet axis when
the exit velocity is just above the critical value for liftoff.
Increasing the exit velocity further eventually causes the
average location of the stoichiometric surfaces just upstream
from the liftoff height to begin to approach the jet axis. At
sufficiently high exit velocities there are very few
stoichiometric surfaces in regions where strain rates are low
enough for unextinguished diffusion flamelets to exist, and
stabilization of the turbulent diffusion flame can no longer be
achieved (strain rates being low enough only in fuel-lean
regions). This defines a sufficient condition for blowoff,
although in practice blowoff may occur at lower exit velocities
as a consequence of passage of a large, relatively rare coherent
structure that carries the flame-stabilization region down-
stream with it. This second concept of liftoff phenomena is
the one explored herein.

III. Critical Value of the Scalar Dissipation Rate
for Local Extinction

The criterion for extinction of laminar diffusion flamelets
in the present study is taken from the work of Linan,7 who
analyzed the structure and extinction of counterflow diffusion
flames. To avoid excessive complication, we assume here that
the overall reaction between fuel F and oxidizer O can be

written as vFF+v0O-*products where VF and v0 are mole-
based stoichiometric coefficients; that molecular coefficients
of diffusion D for all species and for heat are equal; that
radiant energy loss is negligible; that Mach numbers are low;
and that fluctuations of temperatures and of concentrations
of chemical species in approach streams are sufficiently small
to have negligible influences on enthalpies. Then it may be
shown8 that a mixture fraction Z, defined to have a value of
zero in the ambient atmosphere and unity at the exit of the
fuel duct, obeys a source-free conservation equation,

pdZ/dt + pv- VZ = V • (pDVZ) (1)

(where p is density and v velocity) and relates the fuel and
oxidizer concentrations to the temperature on an in-^
stantaneous, local basis. Because of the absence of a chemical
source term in Eq. (1), Z has been called a conserved scalar.8

Bilger has developed the idea of using Eq. (1) in Ref. 8 and in
a number of references quoted therein.

With the specific heat at constant pressure cp assumed
constant, in chemically frozen flow the temperature T is
Tfr = T0 + Z(TF-T0), where TF and T0 denote the tem-
peratures of the incoming fuel and oxidizer. In terms of QF,
the heat released per unit mass of fuel consumed, it may be
shown6 that the mass fractions of fuel and oxidizer,
respectively, are expressible as

and
YF=YFFZ-(T-T^cp/QF (2)

Y0=Y00(l-Z)-(T-T^cp/(vQF) (3)

where' YFF is the mass fraction of fuel in the fuel stream, Yoo
the mass fraction of oxidizer in the ambient atmosphere, and
v the raio of the mass of fuel to that of oxidizer at
stoichiometric conditions \v = (yFWp}/(y0W^), where W
denotes molecular weight]. Multiplication of Eq. (3) by v,
subtraction of the result from Eq. (2), and introduction of the
conditions Yo = YF = 0 result in an equation that may be
solved for Z to show that the stoichiometric value of the
mixture fraction, which occurs for example at a thin reaction
zone of a diffusion flame, is Zst= [1 + YFF/(vY00)} ~!. The
temperature at Y0=YF = Q, Z=Zst is the adiabatic flame
temperature, T<.t = Tf^st+ZstYFFQF/cp, from Eq. (2), where
Tfr.st ~ T0 + Zst(TF — T0), the temperature at Z=Zst, if frozen
conditions prevail.

Under the assumptions that have been introduced, the
flame structure can be studied in terms of one equation,
energy conservation, which may be written as

pdT/dt + pv- VJ= V • (pDvT) + \V/CD (4)

where w is the energy per unit volume per unit time released
by chemical reactions. For purposes of analysis a one-step
Arrhenius approximation is adopted for HV with overall
reaction orders with respect to both fuel and oxidizer being
unity, whence

= (QFBFp2/W0) YFY0e~E/RT (5)

where BF (cm3/mole s) is the frequency factor for the rate of
fuel consumption, E is the overall activation energy, and R
the universal gas constant. The quantities, E, BF, D, and p are
to be evaluated at Tst for the purpose of extinction
calculations.

The analysis of diffusion-flame structure and extinction is
performed by introducing a local coordinate system that
moves with the stoichiometric sheet. A Crocco type of
transformation is then employed to replace the coordinate
normal to the sheet by Z as an independent variable. In the
resulting new coordinate system, let x and y denote or-
thogonal space coordinates tangential to the sheet, let / denote

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
M

ar
ch

 1
2,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/3
.8

08
9 



MARCH 1983 LIFTOFF CHARACTERISTICS OF TURBULENT DIFFUSION FLAMES 425

time, let u and v denote components of velocity in the x and y
directions, respectively, let Zx and Zy identify derivatives of Z
in the transverse directions in the original variables, and
employ standard subscript notation for other partial
derivatives in the new variables. Then by use of Eq. (1) it may
be shown6 that Eq. (4) becomes

+ Zx[2PDTZx+Tx(PD)z]+Zy(2pDTZy

(6)

The transformed normal coordinate Z is stretched about Zst
by the large factor

»=E(T« - r f r>s t)/ [2#7ftZst (7-Zs t) ]

which is essentially the same as the expansion parameter of
Linan7 that measures the thickness of the reaction sheet in the
Z coordinate. When the length scales of the turbulent eddies
are all large compared with the thickness of the reaction zone,
this stretching reduces Eq. (6) in the first approximation to

Tzz=-w/(cppD\VZ\2) (7)

It can be shown explicitly6 that Eq. (7) leads to a problem
equivalent to that solved by Lindn.7 Use of Eqs. (2), (3), and
(5) in Eq. (7), introduction of the stretched variables rj = j3(Z
- Zst ) and y = ( 7st - T)E/(R 7ft )- 777 , where

(8)
and expansion to first order in ft~! in a proper manner
provide the equation

(9)

where the reduced Damkohler number is

(10)
The boundary conditions for Eq. (9) must be obtained from
matching to outer solutions that satisfy Eq. (6) with w = 0.
The advantage of the Crocco transformation is that,
irrespective of the complexity of the turbulence, these outer
equations and their boundary conditions are satisfied by
setting T equal to a linear function of Z, independent of x, y,
and /; whatever is done to the temperature by the turbulence
also is done to the mixture fraction. When the linear functions
in the outer solutions are taken to be those of the equilibrium
diffusion flame, it is found that the matching conditions for
Eq. (9) become djYdrj^ ± 1 as 77^ ± oo.

Linan7 solved Eq. (9) subject to these boundary conditions
and showed that solutions exist only for 5>6qu, an extinction
or quenching value that is given approximately by 6qu =e(l -
\y\). Thus, the laminar diffusion flamelet cannot exist unless

the parameter 6, defined in Eq. (10), exceeds a critical value.
The turbulence influences 6 in Eq. (10) only through the local,
instantaneous rate of dissipation of the (scalar) mixture
fraction at its stoichiometric value, viz., through
Xst =2D I VZlf t . . Putting d = 5qu in Eq. (10) therefore defines
a critical value, Xqu, of the instantaneous dissipation rate X<.{.
In most applications, Zst is small enough for 7 of Eq. (8) to be
negative, and in this case the formula for Xqu is seen by
substitution to be

f4YFFPBF
qu V evWn

RT* f-zct

fr.st

e-E/(RTst) (10

The diffusion flamelets are quenched if Xsl >Xqu. It is evident
by cornparing Eq. (10) with the corresponding Damkohler
number of Linan7 that the counterpart of his counterflow
velocity gradient is basically £ > l v Z l f t , ' o r A"st, within a
constant factor. Thus, although in turbulence Xst is in-
terpreted in terms of dissipation, from the viewpoint of
flamelet extinction an interpretation in terms of strain rate
may be superior; the flamelet is extinguished if the local,
instantaneous strain rate that it experiences becomes too
large.

The principal approximations that have been introduced
here are the constancy of specific heat, the Lewis number of
unity, the one-step, second-order reaction, and the thin
reaction zone. It seems clear that the first of these can be
removed at the expense of greater complexity in definitions.
Estimates suggest that the others often are reasonably good. It
is remarkable that, with the quantities in Eq. (11) evaluated at
the hot flame sheet, none of the usual assumptions concerning
constant properties are needed. Effects of thermal expansion,
for example, automatically are included if p, Xst, etc., are
obtained with proper regard paid to these effects.

IV* Statistical Aspects
of Flamelet Extinction in Turbulence

The quantity Xqu. in Eq. (11) is a chemical quantity
dependent upon thermodynamic and chemical-kinetic
parameters. As such it can be evaluated without consideration
of turbulence. The problem of calculating Xqu is addressed in
a later section. Here attention is focused on evaluation of Xsl,
for use in the liftoff criterion.

Application of tire criterion Xst >Xqu to liftoff of laminar
diffusion flames is relatively straightforward in principle
because Xst can be calculated explicitly by numerical solution
of the partial differential equations that describe the flame
structure in the flame-sheet approximation. The statistical
character of Xst in turbulent flows introduces fundamental
complexities. A probabilistic approach of some type seems
desirable since liftoff is expected to be a random event in the
stationary stochastic process of jet turbulence. Although the
dynamics of flamelets may influence this event, at present
insufficient knowledge is available to include flamelet
dynamics in liftoff descriptions. Therefore a static,
probabilistic approach is adopted here.

The distorted stoichiometric sheet will have a distribution
of ^st along it. Let P(X\Z=ZS[) denote the local probability
density function for this distribution. At positions or times on
the sheet for which .X s l>Xq u , the flamelet cannot exist and
holes will develop along the sheet, within which the reaction
rate is negligibly small. The presence of a hole may alter the
local value of Xst rapidly, possibly lowering it to a point at
which Xst < Xqu. This does not mean that the flamelet will be
re-established instantaneously, because ignition and ex-
tinction conditions typically differ greatly. The dynamics of
the edge of a hole need much more study. To obtain a static,
probabilistic criterion, we ignore these dynamics and forbid
Xs{ from changing as a consequence of the extinctions at
holes, that is, P(X\Z=Zst) pertains to the hypothetical
situation in which the flame sheet is continuous and has not
developed holes, irrespective of the magnitude of Xst. This
idealized probability density function is needed for a static
analysis.

The use of P(X\Z=Zsl) seems clearest in connection with
the prediction o_f liftoff of attached flames. At a small local
average value, Xst, the distorted flame sheet is continuous. As
X5t increases, holes develop in the sheet, and when Xst
becomes sufficiently large there are so many holes that
continuity of the sheet is disrupted; there no longer exists a
continuous path from the downstream flame sheet to the
burner rim. Under this condition liftoff must occur because
the cold flowing gases wilLcarry the flame sheet downstream.
The probabilistic quantity that must be known for calculating
liftoff according to this view is the probable fraction of the
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sheet not occupied by holes. In view of the definitions of Xqu
and 'P(X\Z=Zsl), it seems logical to assume that this
probable fraction is

independence, employing

P(X\Z=Zst)dX (12)

In recent years, the theory of continuum percolation in two
dimensions has received extensive study.9 This theory ad-
dresses precisely questions of probabilistic distributions of
holes in sheets. Through both theory and experiment (i.e.,
measurement of electrical conductivities of sheets of con-
ductors with holes randomly punched in them10) it has been
found that as p is decreased the conductivity of the sheet
vanishes, i.e., connectivity is disrupted, at a critical threshold
value p=pcr, wherepcr is in the range of 0.6 to 0.7. Use of Eq.
(12) with/?=pcr therefore may provide a criterion for liftoff.

Equation (12) may also be used to discuss liftoff heights.
Since Xsi decreases with increasing distance from the duct
exit, it may be expected that p will increase with increasing
distance. Therefore if p<pcr near the duct exit, there will be
height above which p>pcr, and a continuous distorted flame
sheet can exist. It seems logical to identify the liftoff height as
the height at whichp =pcr.

Use of Eq. (12) in liftoff calculations requires knowledge of
the conditioned probability density function P(X\Z=ZS{).
There appear to be no measurements whatever of such a
conditioned function and no measurements of the un-
conditioned function in flames. Measurements of the un-
conditioned function in a nonreacting jet11 are consistent with
the log-normal hypothesis of Oboukhov12 and Kolmogorov13

and give a variance of a = 0.5. Thus, in the absence of better
information, we adopt a log-normal form,

for which the mean and mean-square fluctuation are

(14)

and we employ a = 0.5. From Eq. (12), the critical condition
for liftoff is then found to be

in which use of the estimate pcr =0.63 gives ^st = Q.96Xqu at
liftoff. It is certainly within the accuracy of this calculation to
assume that the turbulent diffusion flame can exist only if

The result of this discussion of statistics therefore is that for
practical calculations of liftoff heights the statistics can be
ignored and replaced by the same sorts of liftoff statements
that would be applied in laminar flows, employing the average
value Xst. This conclusion is not obvious prior to in-
vestigation; depending on the values of a and pcr, the critical
value of the ratio Xst/Xqu varies roughly .from 0.5 to 10. If
improved values of the parameters become available, then
reason might be found for modification of Xst =Xqu as the
liftoff condition.

V. Calculation of the Average Rate
of Scalar Dissipation

Application of the liftoff criterion necessitates calculation
of Xst. Unfortunately, knowledge of Xst for turbulent jets
rests on relatively poor ground. In the absence of information
on the conditioned mean, it is usual to hypothesize statistical

= XP(X)dX=Xtb (16)

where P(X) is the unconditioned probability density function
for the rate of scalar dissipation in the turbulent fluid.
Arguments have been given to the effect that Xst = Xtb may be
reasonable.8 It should be remarked that Xlb is still con-
ditioned on turbulent fluid being present and therefore differs
from the fully unconditioned local average rate of scalar
dissipation.

X= f°° XIP(X)dX
JO

where 7 is the local average intermittency.14

A few theoretical concepts are available for the average rate
of dissipation of turbulent kinetic energy in nonreacting jets
(e.g., Ref. 15), and existing models for conserved scalars in jet
flows (e.g., Ref. 16) enable some deductions concerning Xto
be drawn from these concepts/However, the validity of the
deductions is uncertain, and very little data are available for
testing validity. Only a few measurements exist of dissipation
rates of turbulent kinetic energy in incompressible jets (see
Ref. 15 for citations). Apparently, attempts to measure X in
shear flows have been made in only one experiment,17 which
concerned a jet of preheated air. There is no experimental
information at all under conditions involving combustion,
and the associated experimental difficulties are substantial.

To illustrate what might be done most simply, neglect
combustion and restrict attention to the so-called self-
preserving portion of the turbulent jet, h/d> 10 (where h is
the axial distance downstream from the duct exit and d the
exit diameter), in which the radius increases in proportion to h
and the average velocity decreases inversely with h. Various
lines of reasoning15 suggest that the nondimensional
dissipation rate X£e = edd/U3 (where ecl is the average rate of
dissipation of turbulent kinetic energy on the centerline and U
is the exit velocity), varies in proportion to (h/d)~4. The
simplest argument is to assume that ecl is proportional to the
cube of a characteristic velocity, divided by a characteristic
length, and employ the self-preserving scaling of velocity and
length. The available experiments15 confirm the predicted
dependence, giving X£e = 4S(h/d)-4.

It might be expected that a similar behavior would occur for
the nondimensional scalar dissipation rate, X*} = Xdd/U,
when Xcl is the average rate of scalar dissipation on the
centerline. This behavior can, in fact, be predicted. For
example, a balance between production and dissipation of
scalar fluctuations suggests that Xc] will be proportional to an
average value of (dZ/dr)2 where r is the radial coordinate.
The usual models16 show that in the self-preserving region the
average magnitude of Z varies inversely with /*, and the
average radius is proportional to h, so Xd ~ ( h / d ) ~ 4 .

The available data17 do not seem to support this simple
power-law dependence. Instead, Xd appears to decrease at
first with increasing h, then remain nearly constant in the self-
preserving region. Also, the dissipation rate appears to
achieve a minimum on the centerline and a maximum in the
region of maximum shear.17 The_se observations cast doubt on
the use of models to calculate X and imply that appreciable
uncertainty must exist in estimates of liftoff heights.

Additional complicating factors include the intermittency
(mentioned earlier) and the question of the radial position at
which X should be evaluated for use in the liftoff criterion.
Intermittency will introduce an appreciable difference be-
tween the Xib needed in a liftoff criterion and the ^measured
in experiments that employ the usual_unconditioned sampling
techniques. From the definitions of Xtb [see Eq. (12)] and X
it is evident that Xtb =X/I, and an appropriate value for / is
needed. For this purpose, we use the data of Wygnanski and
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Fiedler 18 for the self-preserving region to write

7=exp[-200(£-0.1)2] £>0.1

= 1- £<0.1 (17)
where £ = r/h. The constant cross-sectional integral

= 1.38x10 ~

is employed as the factor relating Xtb to X. This factor is
much too small if the stoichiometric surface is near the
centerline, but may be appropriate for most fuel-air systems,
which typically have very small values of Zst (i.e., the flame
sheet is near the edge of the turbulent flow).

For purposes of comparison, three different methods are
employed here for taking into account the radial position at
which Xis to be evaluated. The selection of the radial position
is important because it influences the variation of X with hid.
As indicated above, if the centerline is selected then the self-
preserving approximation gives X~(h/d)~4. It will be seen
later that a weaker dependence is needed for agreement with
data on liftoff heights. In the absence of a better theory, we
assume self-preserving behavior and a local balance between
production and dissipation in the equation for Z'2. The latter
condition is expressed as N

(18)

where v( and Sc( denote the turbulent kinematic viscosity and
the turbulent Schmidt number, respectively. To obtain Z(r)
we adopt the self-preserving solution16

(19)

For vt, the incompressible formula16 vt — Ud/10 is em-
ployed. Through algebraic manipulations, these formulas
lead to

Specifically, the formula

(20)

for the nondimensional average dissipation rate. The three
methods differ in the manner in which Eq. (20) is employed in
the liftoff criterion.

In the first method, Eq. (20) is used with the approximation
Sct = 1 and with Z=Z s t . The latter selection is consitent with
the idea that on the average the dissipation relevant to liftoff
occurs at a radial position where the average mixture fraction
is stoichiometric, since flamelets are more concentrated in
that region than elsewhere. With Sc( = 1, the value 7, = 10 is
chosen to fit the data17 on the spread rate of the jet at
Z = Zcl/2, by use of Eq. (19). The formula16

Zd=[(l+2Sc()/32]70(d/h) (21)

is approximated here as Zcl = 6(d/h), and substitutions yield

X*b]=0.24(d/h)1•5(l-0.096^fh7d) (22)

where the subscript / identifies the result of the first method.
The value Zst =0.055, appropriate for methane flames in air,
has been employed here and elsewhere. According to Eq. (16),
an approximation to X*t. is provided by Eq. (22). It may be
noted that, primarily because Z = Zst^Zcl, the functional
dependence of X*bl on hid differs from the centerline power
law.

In the second method_, a cross-section integral, analogous to
that for estimating 7, also is used for estimating X.

(23)

is employed with X given by Eq. (18). The integral in the
numerator becomes

and the integral appearing here is approximated as
[£(dZ/d£) l evaluated at Z=Zs t , again with the idea that
conditions near the mean stoichiometric surface are most
relevant. The better value Sc, =0.7 is now used, and through
substitutions and manipulations it is found that

= 0.46(d/h)2[l-0.039(h/d)1/L4] (24)

The third method is the same as the first, except that the
quantity in the square brackets in Eq. (20) is assigned the
constant value 0.78, purely for the purpose of producing
better agreement of theoretical predictions with the data on
liftoff heights. The resulting formula is

?b3 = 0.018(d/h) (25)

In view of the many uncertainties that have been indicated in
this section, the empiricism in obtaining Eq. (25) might be
deemed acceptable.

VI. Calculation of the Critical Rate
of Scalar Dissipation for Extinction

The preceding results may be used to test the liftoff
criterion, Xs{>Xqu, if the nondimensional strain rate for
extinction, X^u =Xqud/U can be evaluated. Calculation of
this quantity from Eq. (11) requires overall kinetic parameters
that are not generally available. The parameters needed are
beginning to be obtained for some fuels.1? A more direct
approach for methane flames in air is to use experimental
data20 on the extinction of laminar counterflow diffusion
flames to calculate Xqu directly. This entails developing a
theoretical analysis of the particular experiment.

In the experiment,20 the external velocity gradient at ex-
tinction, for methane in air, was found to be 0 = 320 s"1.
Mainly because of the small value of Zst, this number does not
provide a good estimate of the strain rate at the stoichrometric
surface. If z denotes the coordinate normal to the flame sheet,
then this strain rate is Xst = 2D(dZ/dz)2

sl in the experiment.
From Lilian's formulation7 of the counterflow problem,
Z=(1/zerfc(z/V2Z)/a), whence *st = (0/ir)exp [ -az2

st ID}. -For
small values of Z, asymptotic expansion of the com-
plementary error function shows that this formula may be
approximated roughly as

(26)

where erfc~ ; denotes the inverse of the complementary error
function. With Zst =0.055, use of the experimental value of a
at extinction in this formula gives Xqu « 5 s ~ l . Although there
is some uncertainty in this value, e.g., as a consequence of the
fact that the analysis7 assumes constant properties, it seems
likely that the value of Xqu obtained here is of approximately
the correct order of magnitude.

VII. Comparisons of Theoretical and Experimental
Liftoff Heights

The results just obtained for A"*u may be employed in
conjunction with the data3 on liftoff heights to plot X^u as a
function of hid, where h now denotes the liftoff height. The
graph is prepared from the experimental data by selecting a
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Fig. 1 Nondimensional rate of scalar dissipation as a function of the
ratio of the liftoff height to the jet diameter.

value of d, then calculating 5d/U and h/d at each value of U
for which h was measured. The results are shown by the
points in Fig. 1. The solid line labeled X*u represents a best fit
through these points.

The three theoretical formulas that have been derived for
Xfb [Eqs. (22), (24), and (25)] also are shown in Fig. 1. If the
previously derived,liftoff condition (Xsi = Xqu) is correct, then
these curves should agree with the points. It is seen that the
theoretical predictions of liftoff heights are of the right order
of magnitude. However, the curves X*bJ and X*b2t which rely
less on empiricism, tend to exhibit a stronger dependence on
h/d than does Xqu. The empirical result X*b3^, given by Eq.
(25), agrees remarkably well with the liftoff'data. We may
conclude that, within the accuracy with which comparisons
can be made, the liftoff criterion'Xsi =Xqu is consistent with
the data on liftoff heights of methane flames.

VIII. Discussion and Conclusions
The many uncertainties in the calculations presented here

deserve emphasis. The curve of X^u may be in error because
of the manner in which Xqu was deduced from the laminar
extinction experiment, with neglect of variable properties.
Better kinetic data, for methane and other fuels, are needed
for use in Eq. (11). In addition, it would be worthwhile to
generate additional data on liftoff heights for other fuels.
Accuracies better than 10% in liftoff data are unlikely
because of the turbulent character of the process.

Currently the greatest uncertainty lies in .the calculation of
the average rate of scalar dissipation. The models that have
been employed require many unjustified assumptions. Some
phenomena of likely importance have simply been excluded
here because of the absence of methods for handling them.
For example, the density and temperature changes in the
turbulent flames may be expected to have substantial in-
fluences on Xst, but there appears to be no suitable way to
estimate these effects. The fact that experiment17 seems to
.contradict the self-preserving hypothesis for Xcl that underlies
the calculations raises further doubts concerning Eqs. (22),
(24), and (25); the relatively flat experimental variation in the

downstream region suggests that the theoretical curves in Fig.
1 may be too steep. It appears that abandonment of the self-
preserving hypothesis and use of data17 for X may tend to
improve agreement (in functional dependence) between theory
and experiment in Fig. 1, but the data are so sparse and
uncertain that this approach does not yet seem justified.
Furthermore, functional dependences of X*t on hid might
well be modified by the heating and expansion in the flame. It
seems quite likely that uncertainties in the theoretical curves in
Fig. 1 exceed an order of magnitude. More and better data on
rates of scalar dissipation in turbulent jets are needed before
accuracies of the predictions can be improved. Modeling, no
matter how complex_, does not yet constitute a reliable ap-
proach to obtaining Xst.

Notwithstanding these doubts, there is one aspect of Fig. 1
that favors the idea that liftoff is controlled by the quenching
of laminar diffusion flamelets. The data on liftoff heights for
jets of various diameters appear to fall along a single curve in
Fig. 1. This behavior is consistent with the scalar dissipation
rate (a strain rate) being the phenomenon that determines
liftoff. Moreover, the behavior is uninfluenced by the manner
in which the data were treated (for example, a change in Xqu
would merely shift the level of the curve). It would be of
interest to perform further experiments on liftoff heights with
the objective of testing more carefully correlations based on
plotting hid as a function of U/d. If the viewpoint proposed
herein is proper, then universal curves, independent of d,
should be obtained separately for each fuel. Relative heights
of the correlation curves should provide an inverse measure of
the reactivity of the fuel.

Although attention here has been focused on liftoff heights,
similar reasoning may be applied to the prediction of blowoff
conditions. For example, with the approximations leading to
Eq. (22) or (23), a sufficient condition for blowoff is
Zcl <Zst. Use of this condition in Eq. (21) for methane in air
indicates that h/d =95 is sufficient for blowoff. Ex-
perimentally, blowoff occurs earlier, at approximately half
this value of hid. Therefore the sufficient condition is not a
necessary condition for blowoff. Blowoff is a relatively
variable event, exhibiting scatter in data exceeding that for
liftoff heights. Blowoff may be produced by large coherent
structures.
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