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The diffusional-thermal instability, which gives rise to striped quenching patterns that 
have been observed for diffusion flames, is analysed by studying the model of a one- 
dimensional convective diffusion flame in the diffusion-flame regime of activation- 
energy asymptotics. Attention is focused principally on near-extinction conditions 
with Lewis numbers less than unity, in which the reactants with high diffusivity 
diffuse into the strong segments of the reaction sheet, so that the regions between 
the strong segments become deficient in reactant and subject to the local quenching 
that leads to the striped patterns. This analysis differs from other flame stability 
analyses in that the complete description of the dispersion relation is obtained from 
a composite expansion of the results of an analysis with the conventional convective- 
diffusive scaling and one with reaction-zone scaling. The results predict that striped 
patterns will occur, for flames sufficiently close to quasi-steady extinction, with a 
finite wavenumber that in convective-diffusive scaling is proportional to the cube 
root of the Zel'dovich number, The convective-diffusive response contributes to the 
stabilization of long-wavelength disturbances through positive excess enthalpies by 
which the flame becomes more resistant to instability, while the reaction-zone response 
provides stabilization of short-wavelength disturbances by transverse diffusion, within 
the reactive inner layer, which relaxes the perturbed scalar fields towards their 
unperturbed states. As quasi-steady extinction is approached, marginal stability arises 
first at an intermediate range between these two scalings. Parametric results for 
this bifurcation point are obtained through numerical solutions of the associated 
generalized eigenvalue problems. Comparisons with measured pattern dimensions for 
different sets of reactants and diluents reveal excellent qualitative agreement. 

1. Introduction 
Intrinsic instabilities of flames arise from many sources, ranging from buoyancy 

(Taylor 1950) and hydrodynamics (Darrieus 1938; Landau 1944) to diffusional- 
thermal effects (Turing 1952; Sivashinsky 1977). Except for buoyancy, the known 
mechanisms of these instabilities apply specifically to premixed flames and are absent 
in diffusion flames, which exhibit fewer types of instability experimentally as well. 
Non-planar diffusional-thermal instabilities in particular, which arise through effects 
of diffusion of reactants and of thermal energy in the presence of finite-rate chemistry, 
as yet have been derived theoretically only for premixed flames. Among the many 
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premixed-flame analyses of diffusional-thermal instabilities are the early work of 
Barenblatt, Zel’dovich & Istratov (1962), the demonstration by Sivashinsky (1977) 
that cellular-flame instability occurs if the diffusivity of the limiting reactant is 
sufficiently larger than the thermal diffusivity, and the discovery by Joulin & Clavin 
(1979) of oscillatory instabilities as well when the diffusivity of the limiting reactant 
is sufficiently small compared with the thermal diffusivity. Clavin (1985) offers a 
comprehensive review of premixed-flame instabilities. 

The present paper concerns the theory of cellular-flame types of instabilities for 
diffusion flames, some of which have been observed experimentally. As Buckmaster 
(1992) has pointed out, most reports of diffusion-flame instabilities, such as a number 
of observations related to ceiling fires, correspond to conditions under which buoyancy 
is significant. However, there are a few experiments (Garside & Jackson 1953; 
Dongworth & Melvin 1976; Ishizuka & Tsuji 1981; Chen, Mitchell & Ronney 
1992) in which diffusion-flame instabilities have been reported for conditions under 
which buoyancy appears to be negligible. Ishizuka & Tsuji (1981) found that, when 
hydrogen, injected through the walls of a horizontal porous cylinder in a vertically 
flowing air stream, is sufficiently diluted with nitrogen or argon (but not with helium) 
the diffusion-flame sheet that is normally wrapped around the cylinder breaks up 
into flame stripes, leaving regularly spaced regions along the cylinder axis in which 
the combustion is extinguished. Dongworth & Melvin (1976) and Chen et at. (1992) 
studied instead Wolfhard-Parker types of burner configurations and under a variety 
of conditions found cellular-type patterns in the diffusion-flame sheet where fuel and 
oxidizer meet, especially near the base of the sheet. In all of these experiments, 
the spatial direction in which the periodicity occurs is the unstrained cross-stream 
direction; a rate of strain, that is ‘stretch’, in the periodicity direction tends to 
be stabilizing. The patterns observed in these experiments appear to arise from 
diffusional-thermal instabilities, and the present paper offers a theoretical analysis of 
a model problem designed to shed light on the mechanisms by which such instabilities 
may develop. 

The patterns are observed experimentally for conditions under which the Lewis 
number of the fuel is less than unity, that is, the diffusion coefficient of the fuel 
in the fuel-inert stream is greater than the thermal diffusivity. By diffusion-flame 
symmetry, a Lewis number less than unity for the oxidizer in the oxidizer-inert stream 
also should favour the pattern formation. For these reasons, the present paper is 
restricted to Lewis numbers less than unity. Expansions for Lewis numbers near 
unity are not employed, and in that sense, in terminology applied to premixed flames 
(Buckmaster & Ludford 1982), the present approach resembles that for slowly varying 
flames rather than nearly equidiffusional flames. The method of analysis also applies 
to Lewis numbers greater than unity and in fact yields non-trivial results under 
these conditions as well, but to minimize complexity in exposition and to focus on 
conditions most directly applicable to existing experiments, presentation of results for 
Lewis numbers greater than unity will be postponed. Figure 1 is a schematic diagram 
of the type of pattern envisioned here as arising from the instability for Lewis 
numbers less than unity. Basically, the high-diffusivity reactants diffuse preferentially 
to the sinks provided by the strong segments of the reaction sheet, leaving the regions 
between deficient in reactants and therefore subject to local quenching. 

The unperturbed flow configurations in the experiments described above are two- 
dimensional. The forward stagnation region of Ishizuka & Tsuji (1981), which controls 
the pattern formation, is approximated well by a counterflow diffusion flame, while the 
Wolfhard-Parker flows more closely resemble evolving mixing layers. In the present 
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FIGURE 1. Schematic diagram of the diffusional-thermal instability of diffusion flame. 

work, for simplicity the unperturbed flow is taken to be the one-dimensional convective 
diffusion flame illustrated in figure 2. In this configuration, there is a constant net 
mass flux, directed from the porous fuel plate toward the porous oxidizer plate, and 
fuel and oxidizer diffuse from their respective supply plates to the reaction sheet 
where they react to release thermal energy. At each porous plate the concentration of 
the species supplied is maintained constant. Convection is included here, rather than 
focusing on the simpler problem of a stagnant diffusion layer, because it is found 
from the analysis that convection is essential for instability to occur. 

For the diffusion flame in a one-step Arrhenius approximation of reasonably high 
activation energy, stability in the flow configuration adopted here for one-dimensional 
time-dependent perturbations was analysed numerically quite a while ago by Kirkby 
& Schmitz ( 1966), who found interesting differences in behaviour for Lewis numbers 
less than and greater than unity. Their results are useful for testing the predictions of 
the present analysis qualitatively in the limit of large wavelengths of disturbance. The 
present theory can be considered to extend the analysis of Kirkby & Schmitz (1966) by 
addressing two-dimensional time-dependent perturbations, with periodicity imposed 
in the y-direction in figure 2, while maintaining complete uniformity in the third direc- 
tion. These two-dimensional disturbances are introduced for the purpose of investigat- 
ing the inception of the two-dimensional patterns seen in the experiments. Given the 
results to be developed here, it will be straightforward to analyse the corresponding 
instabilities of counterflow diffusion flames with cross-stream periodicity, for example; 
the only difference is that certain functions that arise in the analysis become more 
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FIGURE 2. Schematic diagram of a one-dimensional convective-diffusion flame. 

complicated for the counterflow. The model problem investigated here has thus been 
selected to be the simplest one possible that still illustrates the phenomena of interest. 

The analysis to be presented here treats one-step, Arrhenius chemical processes 
with the Zel'dovich number f l  (a measure of the ratio of the activation energy to 
the thermal energy) taken to be a large perturbation parameter. The approach thus 
involves activation-energy asymptotics. For large f i  there are two distinct regimes 
of diffusion-flame structure (Liiian 1974): a premixed-flame regime, in which non- 
dimensional reactant concentrations in the reaction zone are of order fi-' for one 
reactant and unity for the other, and a diffusion-flame regime in which both non- 
dimensional reactant concentrations in the reaction zone are of order p-'. When 
both boundary temperatures are well below the adiabatic flame temperature, as 
applies in the laboratory experiments identified above, the diffusion-flame regime 
can be relevant for nearly all values of the stoichiometric mixture fraction, while 
the premixed-flame regime can apply only for stoichiometric mixture fractions near 
zero or unity, since that structure is intrinsically unstable unless the non-dimensional 
temperature gradient on one side of the reaction zone is of order p-' or smaller 
(Peters 1978). Stability analyses for the convective-diffusion flame will differ in the 
two regimes. Even in the premixed-flame regime, the stability behaviour will differ 
from that of premixed flames because of the different transport-zone structures, but 
the stability for the premixed-flame regime may be expected to resemble that for 
premixed flames more closely than would the stability for the diffusion-flame regime. 
Because of the known diffusional-thermal premixed-flame instabilities, this tends to 
suggest that the premixed-flame regime will be more relevant to the experimentally 
observed patterns. However, the same patterns are also seen for stoichiometric mixture 
fractions too far from the extremes for the premixed-flame regime to constitute the 
better of the two descriptions. Therefore, in the present paper attention is focused 
exclusively on the diffusion-flame regime. Future work will address the diffusion-flame 
stability for the premixed-flame regime, which in fact proves to be a simpler problem 
to analyse. 

Attention initially will be devoted to perturbation frequencies and wavelengths 
of the same order as the corresponding time and length scales of the convective- 
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diffusive transport zones in the diffusion flame. For large fl, the reaction-zone scales 
are shorter, and therefore the reactive-diffusive zone is treated as planar and quasi- 
steady in this initial analysis. It will be found that diffusion-flame instability can 
already arise with this scaling, but when it does there is always a divergence in the 
growth rate with decreasing scales. This divergence dictates the need to consider 
the next distinguished limit, which occurs at shorter scales, where unsteady and 
transversely varying disturbances arise within the reaction zone. The analysis for 
these shorter scales, the reaction-zone scales treated by Peters (1978), Stewart (1986) 
and Stewart & Buckmaster (1986) for the premixed-flame regime and by Buckmaster, 
Nachman & Taliafero (1983) for the diffusion-flame regime with Lewis number 
of unity, always provides stability at sufficiently short wavelengths. A composite 
expansion can be constructed from the results of the two distinguished analyses 
that yields a dispersion relation valid over the entire range of length scales. The 
general conclusions concerning the stability behaviour are drawn from this composite 
dispersion relation. 

2. Formulation 
The adopted configuration, illustrated in figure 2, is the same as that selected by 

Law & Chung (1982) for their analytical studies of Lewis-number effects in diffusion 
flames with infinite-rate chemistry. With G denoting half the separation distance 
between the porous plates and DT the thermal diffusivity, assumed constant for 
simplicity, characteristic length and time scales for diffusion may be taken to be G 
and f 2 / D T .  These scales are used to construct the non-dimensional space (x,y) and 
time ( t )  coordinates, the x-coordinate being centred so that the walls are located at 
x = +1, as indicated in figure 2. The uniform mass flux ( m )  in the +x-direction 
gives rise to a constant velocity m / p  in that direction after introduction of the 
further assumption, also made for simplicity, that the density ( p )  is constant. The 
non-dimensional constant convection velocity is defined as u = (mf ) / (2pDT) .  The 
diffusion coefficient is taken to be constant, as well as equal for both fuel and oxidizer, 
to avoid the complication of having to introduce an additional parameter, and the 
Lewis number L < 1 is the ratio of DT to this diffusion coefficient. In terms of 
the heat release per unit mass of oxidizer consumed (Q) and the specific heat at 
constant pressure (cp) ,  assumed constant, a characteristic temperature is defined as 
(QYo, ) / (cpL),  where Yo, denotes the oxidizer mass fraction at the oxidizer boundary. 
The non-dimensional temperature ( T )  is selected to be the temperature divided by 
this characteristic temperature, in which L has been included to facilitate describing 
the superadiabatic flame temperatures encountered in stagnant mixing layers when 
L < 1. The scaled oxidizer mass fraction (Yo) is the oxidizer mass fraction divided 
by Yo,, and the scaled fuel mass fraction (YF) is the fuel mass fraction divided by 
vYo,, where v denotes the stoichiometric mass ratio of fuel to oxidizer. A parameter 
that then appears in the boundary conditions is AF = YF_,/(vYO,), where YF_l is the 
imposed fuel mass fraction at the fuel plate. 

In the Arrhenius reaction rate, taken to be of order n with respect to fuel 
and m with respect to oxidizer, two additional parameters arise. One is the non- 
dimensional activation temperature, T, = (E/R)(c,L)/(QYol),  where E is the activa- 
tion energy and R the universal gas constant. The other is the Damkohler number 
D = BLf2v"Y,?_, Y$-'/DT, where B is a suitably defined frequency factor, with units 
of reciprocal time, which can expressed in terms of the pre-exponential factor B' 
of the reaction-rate constant as B = B'(p/WF)"(p/WO)mpl,  in which W represents 
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molecular weight. Here any temperature dependence of the pre-exponential factor 
has been absorbed into the Arrhenius exponential factor, so that the frequency factor 
B can be treated as constant. With 

w = D Y; Y: exp(-Ta/T), (1) 

the non-dimensional formulation is then 

subject to 

Although u is constant here, it is equally possible to let u vary appropriately with x 
and impose conditions at x = &GO, to describe the counterflow flame. 

3. Forms of solutions in the convective-diffusive zones 
According to activation-energy asymptotics, there are two convective-diffusive 

zones separated by a thin reaction zone. The source term w is negligible in the 
convective-diffusive zones at all algebraic orders in the small expansion parameter 
b-', but this term needs to be retained in all orders in the narrow reaction zone, 
the analysis of which provides jump conditions across the reaction sheet that serve 
as boundary conditions for the analysis of the convective-diffusive zones. In the 
convective-diffusive zones, solutions are sought in the form 

} ( 5 )  
T = T(x) + p-'@(x) + P-'c'p(x) exp(iky + at), 

Yi = Fi(x) + p-' CPi(x) + P-'ccpi(x) exp(iky + at), i = F, 0, 

where p = Ta/Tf' is the Zel'dovich number, c is the small perturbation parameter for 
the instability, k is the non-dimensional wavenumber, and 0 is the non-dimensional 
growth rate, real parts of complex variables being understood to represent the 
physical quantities. In ( 5 ) ,  T and ri represent the classical Burke-Schumann solutions 
that apply with infinite-rate chemistry and no reactant leakage. In addition to the 
instability perturbation functions 'p and 'pi, it is found necessary to consider the 
leading steady-state Zel'dovich-number corrections Q, and Qi in the analysis of the 
convective-diffusive zones. 

For the Burke-Schumann limit of infinite-rate chemistry, the steady-state outer 
solutions become 

TF + (Tf - TF)Gc 
T~ + ( T~ - T ~ )  G,+, 

(6) 

F F  = 0 T = {  

where 

(7) 
exp(lux) sinh[Lu(l f x)] 

exp(luxf) sinh[lu( 1 f xf)] ' 
G* - exp(ux) sinh[u( 1 f x)] F* = 

- exp(uxf) sinh[u( 1 f xf)] ' 0 

Comparison of (6) and (21) below will show that an alternative to the first of these 
expressions is F: = (1 + AF)(eZLUX - etZLU)/[AF e2LU + e-2LU - (1 + A F )  ekZLU]. Values 
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of xf and T x ~  are determined by the jump conditions, which yield coth[Lu(l - xf)] - 
AF coth[Lu( 1 + xf)] = 1 + AF, giving 

AF + e-2LU 

x ~ f  = ~ In 
2Lu [ ~ + A F  

and 

( Tj - To ) { coth [u( 1 -X j )] - 1 ) + ( Tj - TF ) {cot h [u( 1 + XX~)]  + 1 } = L {cot h [Lu( 1 - xf)] - 1 } . 
(9) 

For the problem that is symmetric under convection-free conditions, AF = 1 and 
TF = To = TO, expansions of the last two equations for small values of u give 

x t = L u  [ l - ( + ) ( L u ) 2 + . - ] ,  T f = T " + ;  [ 1 - ( ~ ) ( 1 4 2 ) u 2 + - . ] .  (10) 

Corresponding expansions in (7) for x near xf produce 

F'= 0 1 T (x-xXf) + " ' )  G ' = 1  0 T ( x - x j ) + ~ ( l - L ) ( x - x j ) + . . .  . (11) 

In the opposite limit of large u, xf + 1 - ln2/(2Lu) and Tf  -, TO + L(l-2-''L). 
Some of the results will be given only for this symmetric problem, which has seven 
parameters, two fewer than (1)-(4). In addition, the reaction orders m and n usually 
will be taken to be unity, reducing the number of parameters to five. 

When ( 5 )  is substituted into (2)-(4) for the convective-diffusive zones and terms 
of like powers of the small parameters are collected, then it is found for the stability 
problem that 

with null boundary conditions at x = +1 and suitable jump conditions at the reaction 
sheet. Similar equations apply for @ and QL, but with vanishing right-hand sides. 
With the definitions f = (L2u2 + Lo + k2)I /*  and To = (u2 + o + k2)1/2, the solutions 
to (12) and (13) are readily found to be p = a'Gf and (pi = a;F,, i = F,O,  where 
u* and a' are coefficients of order unity, and 

+ +  

(14) 
F' = exp(Lux) sinh[T(l T x)] Gk = exp(ux) sinh[To(l T x)] 

1 exp(luxf) sinh[r (1 f xf)] ' ' exp(uxf) sinh[To(l T xf)]' 
the superscript + applying for x f  < x < 1 and - for -1 < x < x f .  The steady-state 
perturbation solutions in the outer zones are similarly given by @ = A*G$ and 

= A'@, with F,' and G$ defined in (7). Matching determines a*, a:, A' and 
A' from jump conditions in terms of reaction-zone coefficients. The analysis with 
convective-diffusive scaling centres on carefully defining the jump conditions. 

4. The quasi-steady quasi-planar reaction zone 
Jump conditions are obtained by analysing the inner reactive-diffusive layer using 

activation-energy asymptotics. The large parameter of expansion is p, and, with a 
normalizing adjustment factor defined as 

(15) 
AF LU Lu 

2 2 
f = -  {coth[Lu(l + XX~)]  + 1) = - (coth[Lu(l - xf)] - l}, 
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the stretched variables 5 = <f + P f ( x  - xf), 8(< ,y ,  t )  and &(<,y , t )  are introduced, 
where T = Tf  - p-'(6' + y <  - u) and Y; = p- 'O; ,  i = F ,  0, the values of the constants 
<f, y and a, of order unity, being selected to simplify the inner problem. These 
'constants', like those below, could vary with y and t in the quasi-steady, quasi-planar 
description. Substitution into (1)-(3) yields, to leading order, 

where a reduced Damkohler number is defined as 

A of-2 P-(l+m+n) e-TaIT~ eu. 

Matching slopes by use of (11) gives OF = 8-<+PF, Q0 = 8+(+Po and a 8 / d [  t f l  
as < -+ +GO, if 

coth[u( 1 - xf)] - coth[u( 1 + xf)] - 2 
coth[u(l - xf)] + coth[u(l + xf)] Y =  

(18) 2 ( TF - To) {coth[u(l - xf)] - l} {coth[u(l + ~ f ) ]  + l} 
{coth[u(l -xf)] +coth[u(l + ~ f ) ] ) { L u c o t h [ L ~ ( l  -xf)] - l}' 

+ 
so that, for AF = 1 and TF = To = TO, y -+ -(1 - L)u as u -+ 0. The constants P F  
and Po, of order unity, may be set to zero by suitably selecting the values of (f and 
a, which will then be determined from the forms of the outer solutions. 

The resulting inner problem, 

has been solved by Liiiin (1974) for m = n = 1. His solution exhibits reactant leakage, 
defined by a F  = (8 - and demonstrates that, for each 
value of y ,  the parameters M F  and a0 are functions of A .  Figure 3 shows some of 
these leakage results for uF, where it is seen that there is a minimum value of d below 
which no solution exists, the solution for a F  (and ao)  being double-valued when d 
is above this minimum. Figure 3 is for y 3 0, but the problem is symmetric in y in 
that, for example, figure 3 applies for negative y if aF is replaced by ao; typically y 
is negative if L < 1 and u > 0, the case to be considered here, although the present 
analysis is equally applicable when u is negative. Appendix A provides further details 
on how the curves in figure 3 are computed. 

For deriving the matching conditions for the solutions to (12) and (13), it is 
convenient to express the reaction-zone solutions as 8 = O ( ( )  + e [exp(iky + ot ) ]y (<)  
and Oi = Oi(<) + E [exp(iky + ot)]yL(<) ,  to conform with the form of the expansion 
that has been adopted for the outer zones. Superscripts 0 will be placed on a, a; 
and tf to identify the steady-state parts, associated with 0 and Oi, which will be 
considered first, since the time-dependent parts can be treated quite analogously, but 
are more complicated algebraically. 

and a0 = (8 + 

Steady-state matching for temperature can be expressed as 

T f - P - l ( @ + y < - a o )  'V Tf  + P - ' [ G ~ ( T f - T o ) ( < - ( ~ ) / f + A ' ] ,  5 +fa, (20) 

through terms of order p-', where Gb+ = (dG~/dx)I.=,,. The relationship between 
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FIGURE 3. Variations of X F  and A' with A for 7 = 0, 0.25 and 0.5. 

x and < has been used here in the Gf terms so that the independent variables will 
be the same on both sides. Use of 0 + < + a: as < + +a and 0 -+ -5 + M: 

as 5 -+ -cc in (20) then provides relationships for A* in terms of a:, and <;, 
from the constant term of order p-'. The term linear in 5 provides (9) and (18). 
Relations similar to (20) for YF and Yo involve FAi = (dF,'/dx)l.=,, and similarly 
provide relationships for A: and A$ in terms of a;, a: and i.;; in particular A$ = M ;  

and A;  = E:. Additional relationships come from the general coupling-function 
differential equations for YF - Yo and T + Y6, which are independent of w. The 
former actually can be integrated exactly to show that 

(1 + &) e2LU\ - AF e2LU - e-ZLi4 

yo = YF + e2Lu - e-3Lu (21) 

which In fact applies for the general unsteady problem as well, and it results in 
A; = A;, A ,  = A,, and <f" = 0. The last of these results enables one to deduce from 
(20) that A+ = x0 - x; and A-  = d' - M : .  The coupling equation for T + YF shows 
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that d (T  + YF)/dx - 2uT - 2LuYF is constant everywhere and, with the preceding 
relationships, results in 

aO{coth[u(l - xf)] + coth[u(l + xf)] } = a:{coth[u(l - xf)] - Lcoth[Lu(l - xf)] } 

(22) +aO,(coth[u(l+ ~ f ) ]  - Lcoth[Lu(l + ~ f ) ] }  + (a$ - a$)(l- L). 

This last expression enables e", in (17) for A ,  to be related back to A itself, for the 
steady problem, by use of the results of the numerical solution to (19). This is the key 
final relationship that, for example, enables the quasi-steady extinction conditions to 
be calculated correctly. 

A parallel development for the unsteady problem brings in the quantities G;' = 
(dGf/dx)(,=, and Ff = (dF,'/dx)J.=,,, for example, F;' = Lu f r coth[r(lTxf)],  
and, with cl' and a! referring to properties of y and y i  that correspond to a and ai, it 
is again found that a; = a; = a;, a, = a, = a,, <;. = 0, a+ = cl' - a;, a- = a' - uh, 
and 

1 

a'(coth[fo(l- xf)] + coth[ro(l + xf)]) 
= aL{coth[ro(l - xf)] - ( r / T o )  co th [ r ( l -  xf)]} 

+ ah{coth[ro(l + xf)] - ( r /To)co th [ r ( l+  xf)] } + (a; - ah)(l-  L)u/To, (23) 

where a = a0 + E [exp(iky + ot)] cd, etc. In view of (17), it may be seen that a can 
be interpreted as a non-dimensional excess enthalpy at the reaction sheet, associated 
with the finite-rate chemistry for u # 0 and L # 1. That is, if u = 0 then there 
is an excess or deficiency of enthalpy at the Burke-Schumann flame, depending on 
whether L < 1 or L > 1, respectively, as a consequence of Tf corresponding to flame 
temperatures above or below the adiabatic flame temperature. When u # 0 and L # 1 
this difference is reduced in accordance with (9) or (lo), but the finite-rate chemistry 
causes an additional change if u # 0 and L # 1, associated with the factor ea in the 
definition of A in (17). If either u = 0 or L = 1, then c1 = 0. For brevity, henceforth 
a will be called simply excess enthalpy, although that term should be understood in 
the context just explained, that is, as an effect of finite-rate chemistry for u # 0 and 
L #  1. 

5. Instability under convective-diffusive scaling 
Although (22) can be used to extend and correct the diffusion-flame extinction 

analyses of Chung & Law (1983) and of Seshadri & Trevifio (1989) with respect 
to Lewis-number effects, this aspect will be pursued elsewhere, where L > 1 is 
considered as well. Here attention is restricted to the instability for L < 1. From 
the definition of A and the inner-structure solution, it may be seen that (23) provides 
a dispersion relation for the stability problem. In particular, if A' = d In A/daF and 
r = dao/dap, then from the constancy of all other factors in the definition of A in 
(17), the combination Ae-" must remain constant, so that the perturbations must 
obey the equation 

{coth[To( 1 - ~ f ) ]  - (r /To) coth[r (1 - xf)]} 
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derived by differentiating (23). Its transcendental nature causes (24) to be a rather 
complicated dispersion relation. However, its characteristics can readily be determined 
through expansions and numerical computations. 

The Burke-Schumann limit of infinite reaction rate is that for which A + 03, so that 
the only variations are those associated with the convective and diffusive processes. 
From figure 3 it is seen that in this limit ap -+ 0, ao + 0 and A’ -+ -03. Equation 
(24) then reduces to coth[ro(l - x j ) ]  +coth[To(l +xf)] = 0, which also can be written 
as CT = -k2 - u2 - N27c2/4, where N denotes any integer. Since the largest value of CT, 
which corresponds to N = 0, is seen from this result to be negative for all values of k ,  
the Burke-Schumann solution is found to be stable for all wavelengths. The leakage 
effects associated with finite values of A’ thus must be addressed to investigate the 
possibility of instability. 

I t  is first worth remarking that the ordinary quasi-steady extinction condition 
corresponds to the minimum value of the Damkohler number D for which a solution 
exists. In view of the definition of A ,  this minimum coincides with the minimum of 
Ae-“, that is, the minimum of 1nA -a,  not simply the minimum of In A .  The condition 
for this minimum to occur can be expressed as A’ = dz/daF, this last derivative being 
obtained from (22) and being given by (24) with G = k = 0. If either u = 0 or L = 1, 
then da/daF = 0, since the quasi-steady excess enthalpy vanishes, xo = 0, and the 
minimum value of D coincides with the minimum of A .  In this case, the upper branch 
of the S-curve for the maximum temperature as a function of the Damkohler number 
ranges over -m < A’ < 0, and interest centres mainly on negative values of A’. If, 
however, da/daF > 0, then the ordinary quasi-steady extinction evidently occurs at a 
positive value of A’, and there is interest in values of A’ extending at least from -03 

up to this positive value. In this situation, as aF increases, the product de-“ continues 
to decrease for a while even after d begins to increase, because of the continuing 
increase in the excess enthalpy x .  This situation is indeed often encountered when 
u # 0 and L < 1, the conditions addressed here. Therefore, it is important to consider 
not only negative values of d’ but also a range of positive values. The positive value 
that A’ achieves at the ordinary quasi-steady extinction condition will be termed here 
simply the extinction value, for brevity, even though stability analyses of the kind 
being pursued here are needed for ascertaining whether this quasi-steady turning 
point does indeed coincide with extinction. 

The planar instability, studied numerically by Kirkby & Schmitz (1966), is recovered 
from the present approach by putting k = 0. From preceding results it is seen 
that, in the Burke-Schumann limit, the growth rate for planar disturbance is CT = 
-u2 - N27c2/4, always negative, implying stability. As d’ increases, this result changes. 
The expansion of (24) for small values of T and To with AI; = 1 and TF = TO = To 
can be investigated to get an idea of how the change occurs. To derive this expansion 
it is necessary to retain two terms, coth x = xr’( 1 + x2/3 + . . .), and to use the fact 
that, excluding possible uninteresting stable situations in which CT is negative and not 
small, when T o  is small, u2 (and k 2 )  must also be small, so that, from (lo), xf also is 
small. The result of the expansion then turns out to be simply 

( 2 5 )  
which applies only for small values of G. Equation (25) is inconsistent with the 
Burke-Schumann limit because in that limit To = N7ci/2, which is not small unless 
N = 0, and even for N = 0 the limit is approached through values of TO of order 
unity, inconsistent with (25), which has treated A’ as being of order unity, not large. 
Nevertheless. (25) retains the qualitatively correct behaviour that CT becomes negative 

o [ ( l - L ) ( l + r ) - 2 A ’ ]  = 6 4 ’ -  (1 -L2) (1+r )uz  - 3 ( l - L ) ( l - r ) u ,  
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(5 -+ -3) as d’ +. -a. Equation (25)  shows that 5 increases as A’ increases, passing 
at A‘ = 0 through the small value -[(l + L)u2 + 3u(l - r)/(l + r ) ] ,  negative unless r 
is sufficiently large, and reaches zero at A’ = (1 - L2)(1 + r )u2/6 + (1 - L)(1 - r )u /2 ,  
often a positive value. For small values of u, this value of A’ is the extinction 
value, defined above, since the planar instability problem with 5 = 0 (marginal 
planar instability) is the same as the quasi-steady extinction problem. With further 
increases of A’,  (25) shows 5 to increase through positive values, approaching infinity 
at A’ = (1 - L)( 1 + r ) / 2 ,  a value that (for L < 1) always exceeds that for which 5 = 0, 
the ratio of the two values being (1 + L)u2/3 + u(1 - r ) / ( l  + Y ) ,  and u being small. 
Of course, with small TO, results from (25) are restricted to small values of 5, and in 
any event the stability results can describe the behaviour of the perturbed system for 
all time only up to the bifurcation, 5 = 0. 

In general, u is not small, and investigation of the planar instability then involves 
numerical solution of (24) with k = 0. The numerical solutions exhibit qualitatively 
the same type of character that was deduced from (25). Values of 5 are always 
real, and they are negative for A’ sufficiently negative and increase with A’, reaching 
zero at  a finite value of A’. The results agree quantitatively with (25 )  when u and 
5 are sufficiently small. They also are qualitatively consistent with those of Kirkby 
& Schmitz (1966), but quantitative comparisons are not possible because the precise 
bifurcation conditions which can be related to A’ were not presented in that early 
study. 

Non-planar instabilities are studied by considering k # 0 in (24). It is evident at the 
outset, from the present results, that there is no distinguished limit for small values of 
k .  Values of 5 from the dispersion relation vary smoothly with k for values of k that 
are small or of order unity. This smooth variation must be calculated numerically 
from (24), and representative results are shown by the solid curves in figure 4 for 
various values of A’, with r = 1, L = 0.4 and u = 1. The maximum value of A’ in 
the figure is the extinction value. It is seen from figure 4 that the system remains 
stable for all values of k if A’ < 0, and the decay rate of any disturbance increases 
with increasing k when A’ < 0, so that the least-stable disturbance is the planar one, 
although the system is stable to this planar disturbance as well. However, for A’ > 0, 
the situation is reversed, in that the shorter the wavelength of the disturbance is, the 
less stable the system is, and there always exists a wavelength below which instability 
is predicted. This instability in coordinates scaled by the convective-diffusive zones 
suggests that A’ = 0 is in fact the limiting value for the system, rather than the 
extinction value, and whenever A’ > 0 a non-planar instability with a wavelength 
shorter than this scale will occur. This result is the first finding of such a cellular type 
of instability for the diffusion flame and lends significance to the results of Chung 
& Law (1983), who treated A’ = 0 as an important critical value, even though they 
did not recognize that this value corresponds to the onset of cellular instability when 
L <  1. 

The present findings for k # 0 motivate the investigation of different scaling at 
larger k that will apply in the vicinity of A’ = 0 and 0 = 0, to find a stabilizing 
influence. Efforts to find such scaling revealed no distinguished limits other than that 
of the reaction-zone scaling, considered in the following sections. An appropriate 
procedure for addressing the cellular instability therefore is to study the implications 
of a stability analysis with reaction-zone scaling. 

Asymptotic results for large k ,  obtained from the present scaling, are needed for 
properly interpreting results of the stability analysis with reaction-zone scaling. These 
asymptotic results also aid in identifying when cellular instability may arise. An 
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FIGURE 4. Dispersion relations obtained from the convective-diffusive scaling analysis for various 
values of A‘ with r = 1, t = 0.4 and M = 1 .  The largest value of A’ corresponds to the steady-state 
extinction. Solid lines, dispersion relation; dashed lines, asymptote. 

expansion of (24) for k + a provides these asymptotic results. As k + co, both 
r and TO become large, and the hyperbolic cotangents all approach unity plus 
exponentially small terms. Equation (24) then reduces simply to the relationship 
To[l - 24’/(1 + r ) ]  = r - u(1 - L)(1 - r ) / ( l  + r ) ,  the last term of which is a small 
correction when k is large. Omitting this term results in the expression 

24’ 24’ 24’ 24’ 
0 [ ( 1 - ~ + y ) ’ - L ]  =-u2  [ ( l - ~ + r ) ’ - L ’ ]  + Ifr ( 2 - = ) k 2 ,  (26 )  

which is plotted as the dashed lines in figure 4. The negative slope is evident for 
A’ < 0, while at A’ = 0 the constant value o = -(1+ L)u2 is achieved, consistent with 
(24) and (25 )  for r = 1, in which special case the asymptotic result applies for all k 
and even gives the planar stability behaviour correctly. When A’ becomes positive, 
(26 )  predicts instability for wavenumbers above the critical value 

I I 2  

(27) 
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The growth rate (r of the instability actually is predicted to become infinite when A’ 
reaches the value (1  - I,’/’)( 1 + r)/2, but the approximation needs to be restricted 
to small positive values of d’ and must fail before this value is reached. Within 
their ranges of validity for positive A’, (26) and (27) can be simplified to o = 
4d’(k2 - k:)/[(l + r) ( l  - L)] and k: = u2(1 - L2)(1 + r)/(4A’). The last of these 
expressions provides a rough preliminary estimate of the transverse cell dimension of 
the instability, 271/k,, dimensionally: 

(28) 
- 871 (pDT/m)d’”’ 
- 

471 ( / / U ) A ” / ’  

[(I + r ) ( l -  L~)I’/’ 
&T = 

[(I + r ) ( l -  ~ 2 ) l ” ”  

which is the ratio of the thermal diffusivity to the convective velocity multiplied by a 
factor that is proportional to the small quantity A’’’*. It will be seen below that for 
large p neutral stability is achieved at a particular (small) value of which is not 
determined by the present scaling. 

6. Stability analysis with reaction-zone scaling 
In reaction-zone scaling, K = k / ( P f )  and S = o/(flf)’ are treated as being of 

order unity. To prevent unbalance of the transverse-derivative terms, the only outer 
solutions consistent with (12) and (13) and their boundary conditions at x = kl are 
then cp = ‘pi = 0. The disturbances are confined to the reaction zone and must vanish 
as the reaction-zone spatial coordinate approaches fa. Expansions for the reaction 
zone are then introduced in the form indicated after (14), 

T = Tf  - p-’[O(<) + y <  - a ]  + p-’. [exp(iky + at)] y(5),  } (29) 
= p-’Oi(<) + p-’e [exp(iky + ot)] yi(<), i = F ,  0, 

analogous to ( 5 ) ,  and from (1)-(3) the differential equations for the time-dependent 
reaction-zone perturbations are derived, to leading order, as 

Here O ( [ )  is the solution to the problem defined by (19). Since the equation and 
the boundary conditions for I ~ F  and yo are identical as a consequence of the equal 
Lewis numbers of the two reactants, it follows that y , ~  = yo = x(<), and then, for 
m = n = 1, (30) reduces to the pair of equations 

subject to y -+ 0 and x -+ 0 as < + +a, from matching. In (31), the terms involving 
S represent the time-dependent effects in the reaction zone, and the terms involving 
K 2  account for transverse diffusion in that zone, so that the reaction zone is neither 
planar nor quasi-steady any more. Because of the shorter time scale, instabilities 
found with this scaling often have been called fast-time instabilities. 

For L = 1, (31) gives x = w, and a classical eigenvalue problem is obtained, with 
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‘energy’ E = -(S + K‘) and ‘potential’ V ( [ )  = A(2O - 0’ + <2)e--(o*c), such that 

(32) 

Since V --+ 0 as [ -+ fa, it is known (cf. Titchmarsh 1946; Morse & Feshbach 
1953) that there is a continuum of eigenvalues E for E 3 0 and at most a discrete 
number of eigenvalues for E < 0. There are no discrete eigenvalues unless V ( ( )  < 0 
somewhere. Although V ( 5 )  > 0 if 151 is sufficiently large, the solution to (19) has a 
range of [ over which V ( < )  < 0; e.g. O(0) > 2, for the branch of solutions @([) that 
has the greater amount of leakage, that is, for A’ > 0. Therefore, negative eigenvalues 
exist for A’ > 0. These negative values of E correspond to instability (S > 0) at 
sufficiently small values of K .  Interest centres on the least-stable solutions, that is, on 
the largest negative eigenvalues, and for these lowest energies, the eigenfunctions y 
have no zeros for finite values of 5. For these solutions, S = -E - K 2  is maximum 
for K = 0 and negative for K > ( -E)’ /2 .  Buckmaster et al. (1983) addressed this 
problem for K = 0 and concluded that the upper branch of the S-curve of the peak 
temperature as a function of the Damkohler number (the branch that approaches 
the Burke-Schumann limit) is stable, with instability setting in at the turning point, 
A‘ = 0, the quasi-steady extinction point. This same conclusion clearly applies if 
transverse diffusion ( K  # 0) is permitted, The negative slope of the straight line of 
S as a function of K 2  demonstrates the stabilizing influence of transverse diffusion 
in the reaction zone. In contrast to the results for L < 1 with convective-diffusive 
scaling, stability now always is encountered at sufficiently large K .  

For L # 1, the problem defined by (31) is a generalization of that defined by (32), 
and the solutions are of similar character. The equations were integrated numerically 
using a shooting method. The expansions for < + kz, 

were employed as the boundary conditions for the integrations. These conditions 
provide decay at infinity when the quantities inside the radicals are positive and 
oscillation at infinity when they are negative; the integrations were performed only 
when there was decay. The solutions y and were monitored to make sure that they 
did not vanish in the range of integration, so that the largest negative eigenvalue 
would be obtained. The procedure involved selecting values of K ,  L, A and y and 
adjusting S until the boundary conditions were satisfied. Results for S + K 2  as a 
function of A’ for y = 0 are shown in figure 5, in which the curves for L # 1 
correspond to K = 0. Growth rates are seen to increase with increasing A’ and with 
increasing L. Positive values of S are obtained only for A’ > (1 - L’/’)(l + r ) /2 .  
This onset condition is derived analytically in Appendix B. It may be noted that, for 
L < 1, the situation considered here, the onset of the fast-time instability at K = 0 
does not occur until after the turning point, namely where the growth rate from (26), 
the asymptotic expression with convective-diffusive scaling, becomes infinite. Thus, 
the fast-time response is a stabilizing influence over a range of conditions for which 
the stability analysis with convective-diffusive scaling predicts instability. 

A typical set of results for the dispersion relation, obtained numerically as just 
described, is shown in figure 6, in which ;) = 0, L = 0.4 and A’ ranges from 0 to 
1 - L”’. Although S does not exceed zero at K = 0 until A’ > 1 - L‘/*, it is seen in 
figure 6 that for A’ > 0 there is a range of values of K ,  between zero and a maximum 
value that is not very large, over which S > 0. Thus, whenever A’ > 0, the reaction- 
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FIGURE 5. Variations of S + K 2  with A’ for various values of L with 11 = 0. 

The curves for L # 1 correspond to K = 0. 

0.005 

K2 
FIGURE 6. Variations of S with K’ for various values of A‘ with L = 0.4 and y = 0. 

zone scaling predicts instability over some range of K .  This result again points to the 
relevance of A’ = 0 as a critical value, despite the ever existing stabilization at large 
values of K .  Since the instability is found here only for small values of K ,  further 
attention to the accuracy of the instability prediction with reaction-zone scaling is 
warranted. Such considerations are aided by expansions for small values of K and S. 

Under conditions like those in figure 6, where S = 0 at K = 0, near K = 0 
the growth rate S is found to be linear in K 2 ,  namely S = C K 2 .  The constant of 
proportionality C can be obtained by a perturbation approach similar to that given 
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the reaction-zone scaling - 
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in Appendix B. This analysis, outlined in Appendix C. results in 

[24’/(1 + r ) ]  [2 - 24’/(1 + r ) ]  K 2 ,  s = ___ 
[ 1 - 2 A ’ / (  1 + r)]’  - L (34) 

which bears a striking resemblance to (26). This result provides a basis for combining 
the two analyses, in seeking uniformity, as shown in the following section. 

7. The composite expansion of the dispersion relation 
The results of the stability analyses with convective-diffusive and reaction-zone 

scalings can be combined by observing that the slope of the curve of cr as a function 
of k’, obtained from (26), is the same as that obtained from (34). That is, this slope 
of the dispersion relation obtained with convective-diffusive scaling as k -+ co is the 
same as that obtained with reaction-zone scaling in the limit K --* 0. A composite 
expansion may therefore be considered, with the Zel’dovich number p the large 
parameter of expansion and the last term in (26) the common part. Let C ( k )  denote 
the dispersion relation for (T obtained numerically with convective-diffusive scaling 
and S ( K  ) the dispersion relation for o/(Pf) ’  obtained numerically with reaction-zone 
scaling. Then a dispersion relation uniformly valid in k for large values of is 

Figure 7 illustrate the results of the uniform expansion, computed numerically, for 
a representative case. For the curve corresponding to 4’ = 0.1 in figure 7, the 
inner (convective-diffusive) and outer (reaction-zone) scalings and the way they are 
combined are illustrated in figure 8. 

As illustrated in figure 7, there is a range of parameters over which the system 
is stable for all values of k .  However, as A’ increases above zero, an intermediate 
range of k arises, over which instability is encountered. In figure 7, the marginal 
stability condition begins at about A’ = 0.08 and has a wavenumber k of about 
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8 1  

FIGURE 8. A representative illustration of the composite expansion of the reaction-zone scaling 
analysis and convective-diffusive scaling analysis for A‘ = 0.1 with L = 0.4, y = 0, u = 1 and 
f l =  10. 
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9. Variations of S with K 2  a t  a fixed value of A for various values of L. 

2. When instability first arises it therefore does so at a finite transverse dimension, 
which should provide a good approximation to the transverse cell dimension observed 
experimentally and an improvement over (28). The numerical results indicate that 
the wavenumber of the fastest growing mode increases slightly with increasing A’, 
but this change is small, so that the marginal stability condition should provide an 
excellent estimate of the transverse cell dimension. 

It is noteworthy that, in figure 7, which corresponds to a realistic value of p, the 
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cell dimension has k = 2, a value roughly of order unity with the scaling of the 
convective-diffusive zone. This is in qualitative agreement with experiment. Reaction- 
zone scaling would give a transverse dimension that was too short. Thus, even though 
the reaction-zone scaling is needed for completing the analysis given here, the resulting 
cell size is predicted to be larger than this. Marginal stability is seen in figure 7 to 
begin at a value of A’ greater than zero. The computations show that, as p becomes 
larger, the instability begins at smaller values of A ’ ,  values that approach zero as p 
approaches infinity, and the value of k for marginal stability with convective-diffusive 
scaling approaches infinity as /J’ approaches infinity. However, at reasonable values of 
b, this value of k is not large. 

It is appropriate to seek simplification of these results for large p by introducing 
an expansion for small A’ within the present expansion. The results with convective- 
diffusive scaling are summarized after (27). With reaction-zone scaling, to identify the 
value of K at which S is maximum, it is necessary to extend the analysis one term 
farther. In this context, it is of interest to note that in the reaction-zone analysis 
of the previous section, the value of K ,  at which S returns to zero after becoming 
positive is independent of L when the values of the other parameters are fixed. This 
result is illustrated in figure 9, where S is plotted as a function of K 2  for various 
values of L with 7 = 0 and A’ = 0.2; it is seen from this figure that K ,  is independent 
of L, as suggested by (31), which is independent of L when S = 0, and it is found 
from the straight line for L = 1 that Kc2 = S,, the value of S for K = 0 and L = 1, 
given by the curve for L = 1 in figure 5. 

To find K ,  for small values of A’, it is necessary to carry out a two-term expansion 
of (31), as summarized in Appendix C. When the expansion of the potential in (32) 
is considered near the minimum of d,  it is found according to (C 12) that, for small 
values of A ’ ,  Kc2 = P A ” ,  where P is a constant of order unity and independent of L ;  
figure 10 shows P as a function of y. The expansion of (35) for small values of A’ 
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then becomes, by use of (26) and (C 14), 
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c r =  4A’ [ ( k 2  - k:) - 
(1 + r)(l - L )  

which with k,  defined by (27) is an explicit dispersion relation in terms of the slope 
( l / A ’ )  of the curve of the leakage as a function of the logarithm of the reduced 
Damkohler number for the unperturbed, steady-state problem. 

If A’ is sufficiently small, then (36) predicts stability for all k ,  that is cr < 0. At 
sufficiently large values of A’, there are two values of k for which cr = 0 in (36), and 
the system is unstable for values of k between these two values. The marginal stability 
condition is that for which the equation obtained by substituting cr = 0 into (36) has 
only one solution. This occurs when 

where use has been made of (27) in deriving the last equality, and the corresponding 
value of k is 

where the subscript m identifies conditions at the minimum value of the reduced 
Damkohler number, A is an eigenvalue-type integral, and A” is A-’ times the 
curvature of the reduced Damkohler number with respect to fuel leakage. Here 
(f / u )  = AFL(coth[Lu(l +xf)] + 1)/2 from (15), and, for the case AF = 1, for example, 
( f lu )  -+ 1/(2u) as u -+ 0 and (f / u )  + L as u +. a. Since the limit of large u is most 
relevant to the majority of experimental conditions (Ishizuka & Tsuji 1981; Chen et 
at. 1992), the factor (f /ti) is usually found to be independent of u, so that the value 
of A’ at marginal stability is only weakly dependent on u, through its influence on 
the values of P and r. 

dependence 
of k T  in (38) come from the fact that k,  is inversely proportional to A’’/2. Equation 
(38) gives for the improved estimate of the transverse cell length 

It is worthy of note that the p-’l3 dependence of A’ in (37) and the 

which is to be compared with (28). Here F = dk(l + ri)/[A(l + rm)], and figure 
10 shows the parameters A, A:, r, and F appearing here, as functions of y .  The 
estimate of eT given in (28) is not too bad in that, if (37) is substituted into (28), 
then the resulting value of eT exceeds that obtained from (39) only by a factor of 4. 
However, (28) is incomplete in that it does not provide a means for estimating the 
value of A’ needed for marginal stability. In (39), tT is only weakly dependent on the 
small parameter of expansion, being proportional to p-’/3, so that the stabilization 
of short wavelengths achieved through the behaviour with reaction-zone scaling does 
not strongly influence the final cell size. 

The analysis with convective-diffusive scaling applied for arbitrary L < 1 and did 
not address simplification that may occur as the Lewis number approaches unity. 
Equation (38) suggests that is may be worthwhile to consider 1 - L of order p-’ 
with convective-diffusive scaling. In this limit, kT is of order unity, and marginal 
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stability may be found at a finite wavelength about which bifurcation analyses may be 
developed. Continuing work has shown that a theory of this kind can be developed. 

8. Comparison with experiment 
Chen et a / .  (1992) remarked that two conditions are satisfied for all known experi- 

mental observations of cellular or striped diffusion flames, namely the Lewis number 
of the more completely consumed reactant is less than a critical value (z 0.8), and 
the diffusion flame is close to extinction as a consequence of either a short residence 
time, i.e. low A ,  or heat losses to a burner rim. For flames on a Wolfhard-Parker 
burner, they showed that this result was independent of whether the flame height 
was controlled by the jet momentum or by buoyancy and of whether the flame was 
over-ventilated or under-ventilated. Thus, cellular or striped flames should occur 
when L and 3 are sufficiently low. The latter requirement corresponds to A’ being 
sufficiently large, but, of course, less than the value at extinction. 

There is qualitatively good agreement of these predictions with the experimental 
results for several reasons. Within the framework of the current analysis, the existence 
of cellular or striped flames requires the dispersion relation expressed by the composite 
expansion given in (35) to exhibit a maximum Re(o)  > 0 for some finite k .  As shown 
in figure 7, this condition corresponds to a sufficiently large A’ and therefore to 
conditions sufficiently close to extinction. Also, as L approaches unity from L < 1, 
the maximum value of A’ approaches zero, and thus, according to (36), for o to 
remain non-negative k must approach zero, that is. the cell size becomes infinite. As a 
result, for an experimental apparatus of finite dimension, the cellular instability would 
be expected to disappear at some value of L less than unity. I n  the model employed 
here, the Lewis numbers, and thus the diffusion coefficients, of the two reactants are 
equal. This indicates that preferential diffusion of a lighter reactant with respect to a 
heavier reactant is not required to generate the instability, contrary to the proposal 
of Ishizuka bz Tsuji (1981). Moreover, the instability is predicted for any value of 
A F ,  indicating that stoichiometry effects are not critical, contrary to the suggestions 
of some authors (Dongworth & Melvin 1974). Finally, the instability can occur for 
any non-zero value of u, provided that A is small enough, which is consistent with 
the finding of Chen et al. (1992) that cellular behaviour arises at all flow conditions 
if the mixture is sufficiently diluted toward extinction and L < 1. 

From these observations. i t  i s  concluded that the predicted conditions for instability 
are qual i ta t i rdy consistent with the experimental observations. The primary quan- 
titarice prediction of the theory to be compared with experiments is the transverse 
wavelength of the cells ( { T ) ,  given by (39). Of course. any comparison must be 
considered approximate because of the differences in boundary conditions between 
the model and experiments and because the model assumes constant density and 
transport properties, assumptions that are not satisfied by the experiments. How- 
ever, an order-of-magnitude comparison of predicted and observed cell sizes will be 
instructive. 

There are several assumptions and estimations that must be made in order to 
obtain a prediction of t7.. One difficulty is the temperature-dependent nature of many 
of the parameters, factors that are not considered in our analysis. Here the density 
( y )  and flow velocity ( U )  will be evaluated at the cold-gas conditions, denoted by 
subscript 0, which is considered reasonable because, for the one-dimensional geometry 
assumed in this paper, if density variations were considered then pU = p<,U,, would 
be constant. Since the analysis assumes that the Lewis number L is the same for both 
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Reference Measured C r  Estimated f T  by (39) 
Garside & Jackson (1953) 0.7 cm 0.71 cm 
Dongworth & Melvin (1974) 1.0 cm 0.37 cm 
Ishizuka & Tsuji (1981) 0.7 cm 0.78 cm 
Chen et al. (1992): 
1. Momentum-dominated blowoff limit 
U, = 15 cm s-' (their figure 5a) 

2. Buoyancy-dominated blowoff limit 
U, = 7.1 cm sK' (their figure 5b) 

3. Heat loss limit 
U ,  = 4.3 cm SKI (their figure 5c) 

TABLE 1. Measured and predicted values of diffusion flame cell wavelength. 

0.7 cm 

1.6 cm 

1.4 cm 

0.71 cm 

0.62 cm 

0.54 cm 

reactants, for these calculations L is taken to be the average of the Lewis numbers 
of the fuel and oxidant, averaged over the temperature range between ambient and 
the calculated flame temperature. Another uncertainty lies in assigning a value to d, 
the domain size, in the light of the fact that all of the experimental configurations 
employed are essentially semi-infinite in character. A value of / is needed to define 
the non-dimensional convection velocity u through which the normalizing factor f 
is determined. Therefore, / will be assigned a value of twice the tube radius for 
jet flames (Garside & Jackson 1953), a value equal to the slot width for flames 
stabilized on a Wolfhard-Parker burner (Chen et al. 1992), a value of twice the 
standoff distance for experiments employing a porous cylinder in crossflow (Ishizuka 
& Tsuji 1981) and a value equal to the transverse width of the channel for flames 
obtained using the splitter-plate configuration (Dongworth & Melvin 1976). Another 
difficulty that arises for the jet and Wolfhard-Parker flames is that the flow direction 
is not orthogonal to the flame front; hence, the component of velocity normal to 
the front (U,) is estimated as U,/[1 + 4 ( h / ~ ) * ] l / ~ ,  where h is the experimental flame 
height and w the slot or tube width. For the splitter-plate configuration, UI is 
estimated from the reported flow velocity and the flame angle relative to the splitter 
plate reported in earlier work using the same burner (Melvin, Moss & Clarke 1971). 
For the cylinder in crossflow, by design there is a substantial velocity gradient, but 
reported flame position relative to the stagnation plane and the velocity gradient at 
the front can be used to estimate U I .  Given all of these assumptions, in (39) the 
term pDT/m can be evaluated from pDT/m w x / ( f p p o U I ) ,  where the overbars denote 
temperature-averaged values of the thermal conductivity 2 and the specific heat c p .  

To estimate d T ,  first the non-dimensional convection velocity u = mk'/(2pDT) = 
Cppo U1d/(2X) is determined from the experimental parameters and the estimations of 
UL and 8 described above. Then (8) is solved for xf, the factor f l u  is found from 
(15), and y is determined from (18) with TF = TO set to the ambient temperature. 
From figure 10, the value of F corresponding to this value of y is determined; usually 
y is negative, but the results are symmetric, that is, F ( - y )  = F ( y ) .  For the purpose of 
temperature-averaging and to determine the value of = T,/ Tf', the dimensionless 
flame temperature Tf  is calculated from (9). In the estimation of T,, an activation 
energy of E = 40 kcal mol-' is chosen for all hydrocarbon-oxygen-diluent mixtures, 
and E = 30 kcal mol-' is chosen for all hydrogen-oxygen-diluent mixtures. A 
double-iteration procedure is required to solve this set of equations because, in (8) 
for xf, u is affected by the flame temperature as a consequence of cp and 1, which 
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appear in the definition of u, being functions of temperature, and xf in turn affects 
the flame temperature through (9). However, most cases are close enough to limit of 
large or small u that iterations converge rapidly. With xf, y, Tf  and p determined by 
this method, all factors needed to estimate the cell size through (39) are available. 

Results of these estimated cell or stripe sizes are given in table 1. It can be seen 
that, even in the worst case, the difference between the measured and estimated cell 
size is less than a factor of 3, and in most cases the agreement is much better. Insofar 
as only order-of-magnitude agreement could be expected considering the differences 
between the model assumptions and experimental conditions, this level of conformity 
is considered acceptable and provides further confirmation of the general validity of 
the model proposed here. 

9. Concluding remarks 
In this work, a type of linear stability in diffusion flames was analysed by employing 

a one-dimensional convective diffusion flame as a model. Of particular interest 
was investigation of the diffusional-thermal instability mechanism by which stripe 
patterns, observed in near-extinction diffusion flames, can be formed in a convective 
environment through a coupling of finite-rate chemical reaction with differential 
diffusion of thermal and chemical energies for Lewis numbers less than unity. With 
attention focused on the diffusion-flame regime of activation-energy asymptotics 
(Liiian 1974), the results showed that the instability can begin at finite values of the 
wavenumber if the flame is sufficiently close to quasi-steady extinction. Reasonable 
agreement was obtained with stripe patterns observed in the experiments. 

An immediate extension of the present analysis can be made to diffusion-flame 
instabilities with the Lewis numbers greater than unity. Of particular interest would 
be to explain oscillatory evolution of the flame temperature, demonstrated in the early 
numerical study by Kirkby & Schinitz (1966), which eventually led to extinction. This 
entails the complication of computing complex dispersion relations, as opposed to 
the real ones obtained here. Comparison of the characteristics of these oscillatory 
instabilities with those known for premixed flames could help in further identifying 
fundamental differences between premixed and non-premixed combustion. 

There is also interest in instability mechanisms of diffusion flames that lead to 
periodic wrinkling of the reaction sheet rather than to the periodic local quenching 
addressed here. The premixed-flame regime of activation-energy asymptotics (Liiian 
1974) can exhibit this type of instability for near-extinction diffusion flames having 
small values of the stoichiometric mixture fraction, a situation which is often en- 
countered in practical combustion systems. Since leakage of the deficient reactant 
then occurs at the leading order, the reaction-sheet location can depart from its 
unperturbed steady-state location by a distance of the order of the characteristic 
convective-diffusive thickness. A method analogous to that employed to describe 
cellular instability of premixed flames (Sivashinsky 1977; Joulin & Clavin 1979) can 
be applied to analyse this type of diffusion-flame instability. Although the pres- 
ence of heat loss and near-extinction conditions suggests that the characteristics of 
the instability will resemble those found in non-adiabatic premixed flames (Joulin & 
Clavin 1979), a systematic analysis is needed to distinguish possible cellular-instability 
characteristics that are peculiar to diffusion flames in this regime. 

Finally, it would now be worth pursuing nonlinear bifurcation analyses for the 
present problem, as well as for that of the premixed-flame regime. If wrinkling 
of the reaction sheet occurs in diffusion flames. then the resulting increase in the 
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reaction surface area may lead to a decrease in the average scalar dissipation rate and 
thereby result in flames more resistant to extinction. As has already been shown in 
nonlinear stability analyses of non-adiabatic premixed flames (Joulin & Sivashinsky 
1983; Joulin 1986), wrinkling can achieve extended flammability limits. Similarly, with 
the locally quenched diffusion flames approached in the present paper, although the 
weak segments of the reaction sheet are quenched even before quasi-steady extinction, 
the strong segments may sustain strain rates appreciably greater than the extinction 
strain rate because of their enhanced reaction rate. Because of the need to find suitable 
local scalings in the vicinity of the bifurcation point, development of the bifurcation 
analysis corresponding to the present problem could pose interesting challenges. Such 
analyses will be easier with convective-diffusive scaling when Lewis numbers differ 
from unity by amounts of the order of the reciprocal of the Zel'dovich number. 
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Appendix A. Method for calculating the derivative of the inner-layer 
structure with respect to reactant leakage 

Accurate results for A' are needed in (24) for using the dispersion relation. In 
principle, A' may be obtained by solving the problem defined in (19) for various 
values of A and then differentiating numerically. However, this is quite inaccurate, 
and therefore the alternative procedure described here is employed. This procedure 
turns out to be needed for finding other quantities associated with dispersion relations 
as well, as will be seen in the following Appendices. 

To determine the influence of the fluctuation of the fuel leakage E F ,  we must 
calculate various derivatives of the inner-layer flame structure with respect to x F .  
This involves expansion of (19) to include a perturbation of CCF about a given value 
8:. Since 6' and A are parametrically dependent on a ~ ,  letting a> denote a small 
increment in aF, we may write 

where 

Substituting the above expansions into (19) and collecting the terms at order a; alone, 
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we find the problem for determining 9 for m = n = 1 to be 
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To (A3)  must be appended a supplementary condition to assure that the matching 
condition for the fuel leakage, = (0 - is satisfied: 

r: +a;. = @ ( ( ; a ! )  + 8 ~ ; .  - as < + m. (A 4) 

Since a! = (0 - 
found to be 

the applicable supplementary condition for (A 3) is then 

Y -+ 1 as 5-x. (A 5 )  
Solution to (A 3 )  with the additional condition in (A 5 )  yields a unique function 9, 
the eigenvalue A’ and a constant value for 9(-.c) which corresponds to r = dao/daF, 
required in the dispersion relation. For y = 0, Y = 1 for all values of aF, and 
corresponding numerical results for A’ are shown in figure 3, along with results for 
two other values of y. 

Appendix B. Onset condition of fast-time instability for planar disturbances 
The eigenvalue problem describing fast-time instability for K = 0 with general 

Lewis number can be written from (31)  as 

Here we are seeking the condition at which the largest 
positive. 

eigenvalue S begins to be 

Considering a situation immediately after the onset of fast-time instability, we 
assume that S is a small positive number. If S”’ is employed as a small expansion 
parameter, the eigenvalue problem becomes, at the leading order, 

which now has a coupling function for yi - x in a linear functional form. The slope 
and integration constant for the coupling function are obtained by imposing the 
matching condition. In order to achieve matching, it must be noted that decay of the 
solution to zero takes place in an outer region with thickness of order l /S1/* in the 
5-coordinate. In terms of the coordinate = S’/2(, the differential equations in the 
outer layer become 

The exponentially decaying outer solutions are found to be 
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where the integral constants y* and x' are yet to be determined. 
In the double limit of [ -+ l 0  and 5 --f fa, matching is achieved to yield 

y+ - y- = x+ - x- and y+ + y- = L'/2 (x+ + x-), and a unique coupling function at 
leading order is found to be 
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(B 5 )  w - x = ( L ' / 2 -  ~ x+ + x- 
1) . 

The value of x+ can be chosen arbitrarily because the problem is linear and homoge- 
neous. With the choice of x+ = 1, the resulting eigenvalue problem, written in terms 
of x, becomes 

Comparison of this equation with (A3) and (A5) shows that x- = r and that 
an eigensolution exists if A' = (1 - L'I2)(1 + r ) /2 .  Although the eigenfunction x 
must approach zero as 5 + +a, that of (B6) approaches non-zero constant values, 
~ 1 ~ + ~  -, 1 and  XI^+-^ + r .  The composite expansion of the inner and exponentially 
decaying outer solutions, however, provides an eigenfunction that is uniformly valid 
throughout the entire range of 5 and that exhibits the correct exponential decay at 
infinity. Since this eigensolution exists only near the onset of instability, the onset 
condition of fast-time instability for the planar wave is 

Appendix C. Asymptotic behaviour of fast-time instability for large 
wavelengths 

Since S is linear in K 2  as K + 0, the asymptotic relation is sought in the form 
The asymptotic behaviour of the maximum value of S for small K is obtained here. 

S = CK2. (C 1) 

Upon substituting this relation into (31), a set of differential equations is obtained, 
which along with the relevant boundary conditions leads to the problem 

3 -+ f [( 1 + C)K2] 1'2 y,  + f [(1+ LC)K2] "* x as 5 -, *a. 
d5 d5 

(C 2) 
Here we can follow the same perturbation method that was used in the previous 
Appendix. If [(l + C)K2]1'2 is employed as a small expansion parameter, then an 
asymptotic solution is found to exist when 

The asymptotic relation given in (34) is obtained from (C 1) by solving (C 3) for C. 
As an improvement to (34), a two-term expansion of the dispersion relation can be 
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found near the turning point of A by utilizing the fact that the critical value of K ,  
denoted by Kc,  at which S returns to zero from being positive is independent of L as 
shown in figure 9. If the values S = 0 and K = K ,  # 0 are substituted into (31), then 
the equation reduces to 

(C 4) 

where the potential V ( 5 )  is 

and use has been made of the coupling function tp - x = 0. Since we are looking 
for solutions near the turning point, the perturbation of the fuel leakage from that 
at the condition of minimum d is considered to be a small expansion parameter 
6 = LXF - LX:,~,  where the subscript m denotes conditions at the minimum A .  In the 
vicinity of the minimum, the variables are expanded as 

where $,,, = ( d 0 / 8 a F ) ( d j = o  and All, = d;'(d2d/dcx$)(dr=0. When these expansions are 
substituted into (C4), the problems at the first two orders in 6 become 

VO(<)YO = 0, Y O  -+ 0 as ic + fm, (C 7) 
d2Wo 
d t 2  
_ _ -  

and 

VO(5)Wl = [ K 2  + V l ( 0 1  Yo, w1 -+ 0 as 5 -+ +a, (C 8) 
d2Y1 
dC2 
__- 

where the potentials at each order are 

(C 9) I ~ ~ ( 5 )  = A m e-(@m+t5) (20, - O: + (21, 

~ ~ ( 5 )  = A ,  e-(@m+It) (2 - 40, + 0; - 5')  8,. 

Equation (C 7) yields the eigenfunction at the bifurcation point. As summarized in 
the previous Appendix, the eigenfunction yo is then given by a,,, in the inner layer 
and by the first expression in (B4) in the outer layer if [ = K , ( .  A uniformly valid 
eigenfunction may then be constructed from a composite expansion, as before. On the 
other hand, (C 8) is an inhomogeneous linear (self-adjoint) differential equation, and 
a solution exists if the projection of the inhomogeneous part to the null space of the 
corresponding homogeneous differential equation vanishes. Since the null solution of 
the homogeneous differential equation is yo,  the solvability condition can be written 
as 

Ic2 @ d t  + s_: Vl(<) Yo2 d< = 0. (C 10) 

When the integrals are evaluated, care must be taken, since the exponential decay of 
the eigenfunction tpo occurs in the outer layer, whose rescaled coordinate is given by 
[ = h1I2 let. The first-order potential V,(<) has a weighting function e-(@+YO, giving 
exponential decay of the integrand for large 5, so that rescaling of the coordinate is 
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not necessary to find the second integral in (C 10). On the other hand, most of the 
contribution to the first integral comes from the decaying tail in the outer region. 
This integral is then found to be 

where rm is the value of r at the minimum A .  
These results enable the two-term expansion of the dispersion relation to be 

evaluated explicitly. When the relationship A’ = (aF - .;,,)A: is used to evaluate 
the small parameter 6, the asymptotic expression for K ,  in terms of A’ is found from 
(C 6) ,  (C 10) and (C 11) to be given by 

where a positive constant of order unity has been defined as 

A = - 1: Vl(t)  yi d{ = Irn A m  e-(om+pr) (t2 - O2 m + 40, - 2) G3 m d t .  (C 13) 

For y = 0, A: = 0.823, and numerical integration shows that A = 1.87. Figure 10 
shows A and A: as functions of y, obtained from numerical integrations. In terms of 
the value of K ,  thus determined from (C 12), the two-term expansion of the dispersion 
relation near the minimum of A is found by using (34) to be 

--oo 

4A‘K2 
(1  + r)(l  - L )  

S =  
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