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Linear Stability Analysis of Nonadiabatic Flames: Diffusional-Thermal 
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The method of matched asymptotic expansions, in terms of a suitably reduced activation energy, is applied 
to investigate the effects of heat losses on linear stability of a planar flame, which is governed by a one-step 
irreversible Arrhenius reaction. 

The density change associated with the heat release is neglected in order to eliminate the Landau hydro- 
dynamic instability. Attention is focused on diffusional-thermal instability mechanisms. 

The dispersion relation is obtained in terms of the diffusive properties of the limiting reactant and of the 
heat-loss intensity. For a given loss intensity-less than the critical value leading to extinction-the two 
steady planar regimes have different stability properties: (1) the "slow" regimes (which do not reduce to 
the adiabatic one when the heat-loss intensity goes to zero) are shown to be always unstable; and (2) for the 
"fast" regimes (which include and generalize the adiabatic one) cellular structures are predicted to occur 
when the limiting component is sufficiently light. If the limiting component is moderately light, the "fast" 
regimes are stable and unstructured in nearly adiabatic conditions; however, they are destabilized by an 
increase of heat losses and must exhibit cells before the extinction limit is reached. Similarly, for mixtures 
involving a realistically heavy limiting component, our analysis predicts the appearance of transverse travel- 
ling waves near the extinction limit. 

INTRODUCTION 

The quenching mechanism of premixed flames by 

heat loss was first explained by the pioneering ap- 
proximate analyses of Spalding [1] and Alder [2]. 
Singular perturbation methods for large reduced 

activation energy introduced in combustion field 
[3, 4] allowed investigation of this problem in a 
more systematic way. Recent analytical investi- 
gations [5, 6] confirm the qualitative results 
quoted in Spalding [1] and Adler [2], namely: 
(1) for heat-loss intensity higher than a critical 
quenching value there is no steady flame propa- 

gation; and (2) for each value less than this critical 
value, two steady plane waves with different ve- 
locities emerge from the analysis. In the limit of a 
vanishing heat-loss intensity the faster wave re- 
duces to the adiabatic flame, whereas the slower 
one goes to a nearly isothermal combustion process 

with a vanishing velocity and a large amount of un- 

burned reactant. 
Problems about the stability of these two 

branches of solutions have so far not been solved. 
The present work is devoted to such a study and to 
the connected problem of the onset of cellular 
structures on nonadiabatic flames. The first 
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studies of flame stability, in the adiabatic case, 
were carried out by Landau [7] and Darrieus [8], 
by means of a discontinuous flame-front model 
with a constant normal burning velocity. They 
treated the flows of fresh and burned mixtures to 
be incompressible and studied the hydrodynamic 
linear response of flow variables to the perturba- 
tions related to distortions of the flame front. 
This analysis neglects the perturbations induced by 
the distortions on the transport processes within 
the flame. Due to the density jump through the 
discontinuous front, this approximation leads to 
the nonrealistic result: flames are unstable for all 
transverse wavelengths. 

To take the inner dissipative effects into account, 
Markstein [9] and Eckhaus [10] introduced, 
through phenomenological relations, a normal 
burning velocity that depends on the flame-front 
curvature and acceleration. These relations lead to 
stability for sufficiently short wavelengths of per- 
turbations. The Landau instability, of hydro- 
dynamic nature, remains only for the long waves. 
An excellent review of such analyses can be found 
in Markstein [9]. 

Sivashinsky [11] was recently able to approach 
these stability problems from a more fundamental 
point of view. He treated correctly the flame struc- 
ture in the limit of large activation energies by ap- 
plying the singular expansions method. His results 
confirm that (1) for short wavelengths the trans- 
port processes always have a stabilizing effect; and 
(2) for long waves they can introduce an instabil- 
ity mechanism, previously noticed by different 
authors [12, 13]. This last instability mechanism 
can be understood in terms of two competitive 
processes occuring in the perturbed preheat zone; 
indeed, the transverse heat conduction and the 
transverse diffusion of the limiting component 
have opposite influence on the combustion tem- 
perature in the reactive zone and thus lead to com- 
petitive effects on the local flame velocity [13]. 
The diffusive instability occurs for a sufficiently 
low Lewis number, when the molecular diffusion 
is more efficient than the heat conduction. Fur- 
thermore, by comparing the theoretical structures 
of corrugations of the front with experimental re- 
sults on cellular flames [9], Sivashinsky gave 

strong arguments showing that the appearance of 
the familiar cells in flames corresponds to the 
onset of this diffusive instability. The hydro- 
dynamic Landau instability does not play an es- 
sential role in the onset of cells; consequently, it 
can be discarded in a preliminary study by using 
a thermal-diffusional model [11, 13] in which the 
density change associated with heat release is 
neglected. 

In the nonadiabatic flame, the hydrodynamic 
instability must be even less relevant than in the 
adiabatic case. In fact, due to the heat loss from 
burned gases, the downstream temperature profile 
falls down to its upstream value on a characteristic 
finite length; for transverse waves longer than this 
characteristic length, the flame appears as a 
moving sheet without density jump. Therefore, 
the hydrodynamic instability, which should be 
more efficient in the limit of long waves than 
otherwise, is weakened or destroyed by heat losses. 
Then, the simple thermal-diffusional model ap- 
pears to be very convenient to study the stability 
of nonadiabatic flames. We present the results of 
such an analysis in the following sections of the 
paper. 

F O R M U L A T I O N  

For simplicity, let us consider a flame governed by 
an overall one-step exothermic reaction and make 
the usual assumptions of constant molecular 
weight, specific heat Cp, and thermal conductivity 
?~ of the mixture. It has been shown previously 
[5] that the quenching mechanism is qualitatively 
insensitive to the precise temperature dependence 
of the heat-loss power per unit volume. For 
simplicity, therefore, we use a linear law, K(T- 
Tu), where T and Tu are respectively the local and 
surrounding temperatures-Tu also the tempera- 
ture of the fresh mixture-and K is a constant co- 
efficient that measures the intensity of heat losses. 
This linear law is also a good approximation for a 
flame propagating in a duct when heat losses are 
due to conduction towards the cold walls [14]. 

To simplify the molecular diffusion mechanism, 
the two reactants are assumed to be small traces in 
an inert gas and are at a stoichiometrically un- 
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balanced composition, a In such a case the only 
diffusion coefficient appearing in the analysis is 
the binary diffusion coefficient D of  the limiting 
component A and the inert gas. The other reac- 
tive specie concentration is unaffected by the reac- 
tion. 

The energy and specie conservation equations 
for such a model of  isobaric flames are written as 

~T 
pc ,  - : -  + p v .  V(C,,T) 

ot 

= X A T - - K ( T - - T u ) + Q "  w(p, T, YA)  (1) 

DYA 
p ~ + p V .  7(YA) 

= pD Ay a -- w(p, T, YA ), (2) 

where t is the time, YA is the mass fraction of  the 
limiting component A, Vis the local hydrodynamic 
velocity, p is the density of  the mixture, Q is a 
heat of  reaction, and w(p, T, YA)  is the rate of  the 
chemical reaction, given by an Arrhenius law 

W(p, T, YA)  = P 2 " B " YA " exp , (3) 

where B is a preexponential factor, taken to be 
constant, R is the universal gas constant, and E is 
the activation energy. Thereafter E is assumed to 
be greater t hanRTb2 / (Tb  - Tu), where Tb = Tu + 
(Q/Cp) 'yA u is the adiabatic flame temperature. In 
accordance with the thermal-diffusional model, 
we take p = constant in equations (1)-(3). This 
approximation, the constancy of  pressure, and the 
ideal gas law, amount to take the thermal expansion 
parameter a = [(Tb - Tu)/Tb] much smaller than 
unity (a ,~ 1). For sufficienty high values of  E, this 
approximation remains consistent with the funda- 
mental assumption of  a high value of  the reduced 
activation energy 

E T b - - T u  
/3-=- - - ( / 3 > > 1 ) .  

RTb Tb 

1 The present analysis can be generalized to a nearly 
stoichiometric fresh mixture [ 15 ]. 

With these notations, the Arrhenius law (3) takes 
the form: 

w(p, T, y A )  = B • p2 . e - -E /nTb  . YA 

/3(0 -- 1) 
• exp (4) 

1 + a (0  - -  1 ) '  

where 0 is the reduced temperature, 0 = [ ( T -  
Tu)/(Tb - Tu)]. When/3 is large it is readily seen in 
(4) that a small 0 variation of  13 - 1  order around 
0 = 1 strongly modifies the production term 
w(p, T, YA).  Thus, even for a ¢ 1, small tempera- 
ture changes have to be considered. Since we 
neglect the change of  density across the flame, 
there is no more coupling mechanism between the 
hydrodynamic velocity field and the heat release. 
If  the fresh mixture is initially at rest, the velocity 
of  gases remains everywhere equal to zero while 
the flame propagates. This is the main feature of  
the thermal-diffusional model. 

Let U be the normal propagation velocity of  
the steady planar deflagration wave, and let 

X = Xt(Z,  t) = -- Ut + e4~(Z, t) (5) 

be the equation of  the perturbed flame front in 
the laboratory frame of  reference where the gases 
are at rest. The e is a small dimensionless param- 
eter measuring the amplitude of  the front cor- 
rugations. 

For saving notations, we use only one trans- 
verse coordinate Z. When nondimensional co- 
ordinates (x, z, r) are introduced in a moving 
frame according to 

pUC n 
(x, z) = ( x -  x t ,  z ) .  

k 

and 

t . pu2cp 
r , (6 )  

k 

equations (1) and (2) can be written as 

- - + - -  1 - - e  = A O + W - - - - O  (7 )  
ar  ~x 2g 
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a4~) 1 

~--r ~x ~r - L e 
(8) 

where y is the reduced mass fraction of A, defined 
as YA/YAu,  d~ equals ¢. [(pUCp)/),], and the 
Laplacian operator A is given by 

and 

x= +°o:O =dye=O, (15) 
dx 

the following relation between L and H is found 
[5] (cf. Appendix): 

3z Oz 3x 2 ' 
(9) 

and l .e denotes a Lewis number, defined as the 
ratio of the thermal diffusivity of the inert diluent 
X/pC n to the molecular diffiasion coefficient of the 
limiting component D:L e = (X/pDCp). According 
to equation (4) and to the small expansion param- 
eter hypothesis (a ,~ 1), the adimensional source 
term W is given by 

W(O, y )  = L • [3 ~ • y • exp/3(0 -- 1), (lO) 

where L is the usual eigenvalue 

~kpu2B e--E/RTb 
Z = _ - /^ ,r~2,-, (1 1) ~2 U,,,t.' j ~p 

The reduced heat-loss coefficient H in (7) is given 
by 

XK 
H ~ - • 2~. (12) 

(oo3~c. ~ 

H = log (2Le • L )  • (1 + O(ff-q). (16) 

In the adiabatic case, both K and H are zero, and 
the value of L given by (16) is the adiabatic eigen- 
value Lad ~ (2 Le) - 1 .  Therefore, we can write 
(16) as 

L 
/ / = l o g - - - -  + 0(/~ ' -1)  

Lad 

U 
= --2 log ~ + 0 ( ~ 1 ) ,  (17) 

Uaa 

where Uad is the adiabatic flame velocity. When 
the definition of H in (12) is applied, (17) can be 
written in the following equivalent form, correct 
to the leading order in/3 --1 : 

6 0 U a d C . ) 2  - • l o g  . (18) 

Equation (18) clearly shows that K must be less 
than or equal to the critical quenching value: 

The scaling factors /3 --2 and 2fl are introduced in 
equations (11) and (12) to obtain quenching 
values of H and L that remain finite in the limit 
/3 -~ oo. For steady planar conditions, (7) and (8) 
become 

dO d20 a .  
- + W ( 3 7 , 0 )  - -  ( 1 3 )  

dx dx 2 2~ 

d~ 1 d 2 f  

dx  Le dx ~ 
WO S, 0). (14) 

When (13) and (14) are solved by an asymptotic 
expansion for/~ ~ oo with the boundary conditions 

x = - o o :  0 = 0 , 2 =  1 

K* = (pU.a " C.)2 . ~e-1 

2/3 

For K > K* there is no steady flame propagation, 
and for 0 < K < K* two different possible values 
of U are obtained from (18). These two values of 
nonadiabatic flame velocity belong to two different 
ranges: the first value (larger one) is included in 
the domain ] U*, Uad], whereas the other one is 
smaller than U*. The "fast" regimes, according to 
(17), are associated with 0 < H < 1 ; they are true 
generalizations of the adiabatic one since U ~ brad 
when K - 0. The "slow" regimes, corresponding 
to H > 1, are new regimes since U ~ 0 when K 
O. The extinction H* = 1 separates these two 
ranges and occurs with a nonzero velocity, U = 
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U* -- e--O'5Uad . The present work is mainly con- 
cerned with the linear stability of the aforemen- 
tioned two regimes that one obtains from (18) 
when K is fixed to be smaller than K*. 

Time-dependent solutions of (7) and (8) are in- 
vestigated by the method of small harmonic per- 
turbations. One seeks 0, y, and • of the form 

qb(z, 7-) = exp (wT- + ikz) 

O(x, z, 7-) = + e • • • b(x) 

y(x, z, 7") = y(x) + e"  qb. 33(x), 

in which e is assumed to be small (e ~ 0). 
The linearized equations for the perturbations 0 

and 33 are easily obtained from (7), (8), (13), and 
(14): 

H .  
(60 -t- k2)/~ -t ~ -F - -  

dx dx 2 2~ 
-~ 

= (60 -I- k 2 )  - 
dx 

k 2 )  d33 ld )3 
6 o + - -  ) +  

Le dx Le dx 2 

= o3-I- - - ,  
dx 

where 

= a w  a w  
• a---O (#"~)+Y "'-~y (O,y) 

Since we are concerned only with the intrinsic 
stability of flames, no upstream forcing terms 2 are 
introduced, and the following boundary condi- 
tions are used: 

tions, one obtains the dispersion relation, which 
expresses the amplification rate 6o as a function of 
the transverse wave number k, with/~, L e, and H as 
parameters. Rate co may be a complex number, 
but the transverse wave number has to be real 
since we are interested with the stability of trans- 
versely unbounded flames. If the real part of 6o is 
positive, the corresponding wave number is un- 
stable. 

THE DISPERSION RELATION 

(19) Difficulties in solving the problem are due to the 
production term ib, which introduces through (22) 
nonconstant coefficients in the differential equa- 
tions (20) and (21). However, according to the as- 
sumption of large values of /~, ~b is everywhere 
negligible, except in a thin reactive zone, the width 
of which is 0(/3 - 1 )  in (X/pUCp) units. As the up- 
stream diffusive thickness (X/pUCp) is of order 
uni ty-by definition-and the downstream cooling 

(20) length is of order ~, the reactive zone can be seen 
in a first approximation as a boundary sheet be- 
tween two larger nonreactive zones. 

In fact, (5) is the equation of the perturbed re- 
active surface. Boundary conditions on both sides 
of the reactive sheet are obtained by solving the 
inner equations inside the reactive zone, and then 

(21) matching the inner solutions with the outer ones. 
When time dependence is sufficiently slow and 
transverse wavelengths are sufficiently long, the 
structure of this inner zone is qualitatively un- 
affected by the flame distortions. These boundary 

(22) conditions are then obtained in a similar way to 
the stationary planar case (cf. Appendix). 

In the outer nonreactive zone, with lb negligible, 
the governing equations (20) and (21) become 
linear differential equations with constant coef- 
ficients. Thus the corresponding bounded solu- 
tions are easily obtained. When expressed in terms 
of boundary values on the reactive sheet, they take 

(23) the following form: 

Furthermore, we require that the perturbations )3 
and 0 remain everywhere bounded. Once (20) and 
(21) are solved with the aforementioned condi- 

2 Such forcing terms appear in the turbulent-flame 
problem [ 16]. 

" --dO+- (x)+ 0 ± ( 0 ) - - - -  (0 e ='x± (24) 
0±(x) = dx dx 

)3 ± (x ) _ (x)+ ( ) 3 ± ( O ) - ~ ( O ) ) e  x'u± (25) 
dx \ - - - a x  / 
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with 

'I1,/l ( )1 X±= 2 T- + 4  co +k2 + H 

Le[ ,V/1 + 4 ( k_Z~l ' v ± -  = -  1T- co+ 
2 Le Le ]1 

(26) 

where the symbols + and - denote the down- 
stream cooling region and the upstream preheat 
zone, respectively, and 0-± and v± are the reduced 
temperature and concentration outer profiles of 
the unperturbed steady problem (13)-(15), spe- 
cifically: 

y+(x) = 0 (27) 

y - ( x )  -- 1 - e Le'~ (28) 

According to (6), x = 0 corresponds to the reactive 
sheet, and the x axis is oriented toward the down- 
stream burned gases. 

The longitudinal gradients of 0 and 3~ on both 
sides of the reactive sheet can be expressed, using 
(24) and (25), in terms of the corresponding 
boundary values: 

d{) -+ d20  ± 
,ix (o) = dx 2 (0) + ×5 

k [~+-(0) -- dO±dx (0)) (29) 

d)3± d2y ± 
(0) = dx---- ~ (0) + v ± 

I 
Since the production term ~ is transcendentally° 

small in the outer nonreactive zones, relations 
(24)-(28) are accurate up to all algebraic orders 
in if-1. 

The key of the method is that the inner reac- 
tive zone can be solved by an asymptotic ex- 
pansion for large values of /3 without any as- 
sumption on the amplitude of front corrugations. 
Matching of these perturbed inner solutions with 
the outer ones in (24) and (25) provides us with 
different relations between the lowest-order terms 
of the /3 expansions of boundary values 0±(0), 
fi±(0), and space derivatives (dO±/dx)x=o, and 
(d.~±/dx)x=o . These relations, associated with 
those obtained from (29)and (30), are in sufficient 
number to obtain all the terms involved in (29) 
and (30). They also give a compatibility relation 
between the wave number k and amplification 
coefficient o) (i.e., the dispersion relation). 

When the following expansions of the outer 
solutions 

(0-+ (X), .~-+ (X)) = (00-+ (X), .~0-+ (X)) + ff- l(O 1 ±(X), 

)~1 ± (x)) + 0(/3 -2)  (31) 

(x ±, v ±) = (Xo ±, Vo ±) + ~-1(x l  ±, Vl ±) 

+ 0 ( ~  2) (32) 

are introduced in (29) and (30), together with the 
analogous expansions of v-* and ~--+ previously ob- 
tained [5] (cf. Appendix), a first set of relations 
emerges: 

a S o -  a ~ l -  
ax ( o ) =  1 - × o - ,  ax (o) 

aOo ÷ a01 
dx (0) = 0, - -  (o) dx 

- - X I - ,  

(33) 
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dio- 
dx 

d y l  
- -  (o) = - t o q o  - . o - ) , - ~ x  (o) 

= - -  I1  ( t o  - -  1 ) 0 - - )  - -  10 (11 - -  I)1 - -  ) 

where the brackets [ ]+_ denote jumps between 
x = 0 -+. When compared to (33), the first part of 
(40) gives Io(1 - Xo-) = lo(lo - 1)o-). By intro- 
ducing (37)-(39), this last result leads to 

clio + dill + 
dx (0) = 0, - -  (0) = 0, (34) 

dx 

where the following boundary conditions obtained 
from the inner zone solutions are used (cf. Ap- 
pendix): 

0o+(0) = 0 o - ( 0 )  = 0, 3)o+(0) = Y o - ( 0 )  = 0 (35) 

01+(0) = 01 - (0 )  = 01(0), 

Yl +(0) = Yl +(0) = 0 (36) 

and where l o and ll are defined by 

Le = l o + f f - l l  1 + 003--2). (37) 

Similar expansions for H, co, and k 2 are intro- 
duced in (26) to obtain the values of all the terms 
involved in (31) and (32): 

H =Ho + 0(if-l), with Ho - - -2  log - -  

and 

k2 = ko 2 + f f - l (k2)1  + O(/T -2)  

co = oo 0 -'l'- ]~--1¢,,01 -'l- 0(~ ' -2) .  

U 
(38) 

Uad 

(39) 

A second kind of relation between the boundary 
values and derivatives is obtained by solving the 
inner equations and matching them with the outer 
ones (cf. Appendix): 

lo (1- -  ~/1 + 4  ( ~ o  + k°2~ / 
Zo 

= 1 - -  ~/1 +4(6o o+ko2) .  (42) 

When we look at the response of the system to a 
perturbation with a wavelength of the same order 
of magnitude as the thermal length (k/pUCp), k o 
is different from zero. 

Then the only way to satisfy (42) is to set 

l o = 1. (43) 

This result clearly shows that the present analysis 
is restricted to Lewis numbers close to unity. In 
gases, the Lewis number often is close to unity 
and, in fact, assumption (43) is not restrictive for 
the study of combustion in gas mixtures. 

With (33) and (34), the second part of (40) fur- 
nishes the value of the departure of the maximum 
temperature from its adiabatic value: 

A 

01(0) = 2 ( 1 - - X O - )  (44) 

When equations (32) and (44) are combined with 
(41), one gets a supplementary relation between 
×o-,  Xl- ,  Vo-, and v l - :  

(2(1--Xo-)'~-~)(Xo+--Xo-)-J-X1 - 

dO o -  -1  d ~ o -  1 . 
- ~ x  (0) - l o  - ~ x  (0) = 2 0 1 ( 0 )  (40) 

- f<l • + 

dx J _  lo L dx J _ - - l o  "-~ L-dTJ_ 
= 0, (41) 

= u l -  -- l l .  (45) 

When expressions (26) and expansions (37)and 
(39) are introduced in (45), it is readily found that 
the terms 6o 1 and (kZ)l cancel (fortunately). Thus 
we are left with the following relation between 
6o 0 and ko 2, where H o and lx, which characterize 
the loss intensity and the Lewis number, respec- 
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tively, appear as parameters: 

ll (1 F + 2coo) 
2 

with 

(46) 

F = x/1 + 4(coo + ko2), Re (P) > 1. (47) 

Equation (46) is the dispersion relation, which 
describes the stability properties of nonadiabatic 
flames for perturbation wavelengths of the same 
order of magnitude as flame thickness. 

1, this bifurcation occurs for sufficiently light 
limiting reactant. The instability leading to bifur- 
cation appears when the transverse molecular dif- 
fusion induced by wrinkles becomes sufficiently 
efficient (compared to heat diffusion) to decrease 
the temperature of reacting zones pointed toward 
burned gases. For the same reasons, the temper- 
ature increases locally when the reactive sheet is 
pointed toward the fresh mixture. In this case, 
corrugations are amplified because the local ve- 
locity of the reactive sheet increases with tem- 
perature. As the heat losses affect only the heat 
transfer, they modify the stability limits. 

Let us begin to investigate the behavior of per- 
turbations of very large wavelengths. For k o = 0, 
(46) reduces to 

DISCUSSION OF RESULTS 

With H o -- 0, that is, for a vanishing heat-loss in- 
tensity, (46) reduces to the dispersion relation 
recently obtained by Sivashinsky [11] for the 
diffusional-thermal model of adiabatic flames. 
Before pointing out the typical effects of heat 
losses, let us briefly recall the main results ob- 
tained for the adiabatic case. 

In the case of Lewis numbers/_ e = 1 + (l 1/1~) + 
-.. such that - 2  < l 1 • 10.5 ".., all the wave 
numbers k are shown to be stable. For usual values 
of activation energies and of Lewis numbers oc- 
curring in gas mixtures, l I always is less than the 
above upper bound. Then, for the diffusional 
stability of adiabatic flames, the only useful 
critical value o f l  1 is ( -2) .  When/1 • -2 ,  a critical 
wavelength A e = (27r/ke) appears, which corre- 
sponds to neutral stability. All wavelengths A 
greater than A e are unstable and those less than A e 
are stable. Furthermore, since planar perturbations 
(A = oo) are stable, there is a finite wavelength 
Am(Am > Ae; Am = 2n'/km) for which the ampli- 
fication rate has a maximum, com. Critical wave- 
length A m can be reasonably used to characterize 
the dimensions of cells experimentally observed in 
unstable situations (see Fig. 3a). When l I ap- 
proaches ( - 2 )  from below, A e and Am go to 
infinity and the maximum growth rate corn goes to 
zero. Thus Le = 1 + [(-2)//3] appears to be a bi- 
furcation point. Since 11 < 0 corresponds to L e • 

F + I  11 F - - 1  
F 2 - -Ho . . . . . .  (48) 

2 2 2 

From (48) it is readily seen that the real part of 
coo is always positive when H o > 1 (i.e, U < U*). 
Thus the "slow" regimes are always unstable for 
planar perturbations and cannot be observed. The 
result is quite different for 0 < H  o < 1, that is, for 
the "fast" regimes (U* < U < Uaa). The real part 
of coo is plotted on Fig. 1 for different values ll 
and H o and for k o = 0. 

In the range 6 < l  1 < 4 ( 1  +x / J )  = 10.93 "-', 
two particular values o f H  o appear: 

Ho = H(3)( /1)-  2 • ~ - -  (-~ + 2 )  

H o = H ( 4 ) ( I 1 ) =  8 x / ~ 1 + 2 ) - -  ( ~ + 4 )  

with 

/-/(3)(6) = H(4)(6) = 1; 

/-/(3)(4(1 + %/-3)) = ~(4)(16) = 0. 

As seen in Fig. 1, infinite wavelengths are stable 
[Re(coo) < 0] only for 0 < H < b((Z)(ll); 
they exhibit instabilities of oscillatory type 
[ Re(co o > O, Ira(coo) :/: 0] for H(a)(lx) < H  o < 
H(4)(11), or of monotonic type [Re(coo) > 0, 
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~Fast" regimes -7- *Slow" regimes =- 

Fig. 1. Real part of the amplification coefficient to O for planar disturbances: solid 
lines - -  correspond to real toO; dotted lines . . . .  correspond to complex toO. 

Im(coo) = 0] for ~(4)(11) < n 0 ( 1. Notice that 
near the extinction limit (1 - H o ,~ 1 ), the critical 
value of  l 1 associated with the planar instability 
decreases to 6, which is a rather accessible value 
(/~ = 16 and l 1 = 6 give l e  = 1.375). 

Such a result is a first illustration of  the fol- 
lowing proper ty:  near the thermal ext inct ion limit 
(Ho = 1) one can observe behaviors that were pre- 
dicted to occur in the adiabatic case for irrelevant 
values of  the Lewis number. 

For finite wavelengths (k o 4: 0), (46) and (47) 
involve two other limiting curves, H o =/-/(1)(/1) = 
1 + ( l l /2 )  and H o - Ht2)(II)  (defined later), 
sketched in Fig. 2. 

For a given value of  H o, the first one gives the 
critical value of  Le associated with the instability 
described at the beginning of  this section for 

adiabatic flames, and H o -- H(1)(ll) is a line o f b i  
furcation points in the (H o, l l )  plane. Around thi: 
line, 6 -= Ho - 1 - (/1/2) is small, and the disper 
sion relation (46) simplifies to 

(1 --Ho)¢O o = ~ko 2 --  (4 - - H o ) k o  4, 

with 

ko 2 = 0(5), (90 = 0(82).  (49 

In (49) the small parameter 6 has to be smalle 
than (1 - Ho). Near the extinction,  o = 1 - H( 
is also small and, instead of  (49), (46) gives al 
equation with two independent small parameter 

6 and o: 

(8 + 0)03 0 ---- ~((.0 0 + ko 2) - -3( (0  0 + k02) 2 , 
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I ~ H°=')'}('I(~') 

3 - b  " x ~  

- 2  I 

J 

curve Ho= ,H0~lt,} 
3-a 

Fig. 2. Stability domains in the (Ho, 11) plane. 

t, 

18 
5 

Ho 

with 

/Co 2 ~ ~o  ~ 8 = 0(o). (50) 

Equation (49) is similar to the Landau equation 
for the second-order phase transition, where the 
order parameter should be the wave number k m = 
[5/2(4 - Ho)] v, associated with the maximum 
growth rate win. The shape of  (49) is given in Fig. 
3a. 

The critical value of  l I associated with the dif- 
fusive instability, l I = -2(1  - Ho), varies from - 2  
to 0 as the heat-loss intensity increases from H o = 
0 (adiabatic case) to H o = 1 (extinction limit). 
Thus the corresponding critical Lewis number goes 
to unity by lower values when heat-loss power ap- 
proaches the extinction value. Therefore, initially 
stable regimes such that 1 - (2/#) <l.e< 1 can be 

destabilized by an increase of  heat losses. In other 
words, this instability occurs in nonadiabatic cases 
with limiting reactants that are comparatively 
heavier than those needed in the adiabatic case. 
One can thus predict that the cellular structures 
are more easily obtained near the thermal extinc- 
tion limit. Indeed, for limiting reactant of  Lewis 
numbers less than unity, which is often the case 
for usual mixtures, our results show that cells must 
occur prior to extinction (see Fig. 2). Similar phe- 
nomena are known to occur near the composition 
limits of  flammability that are often reached with 
a cellular structure [9].  

Notice that for Lewis numbers very close to 
(but less than) unity, 0 < - I  1 <~ 1, the diffusive in- 
stability is obtained only in the vicinity of  extinc- 
tion; moreover, it is differently time-scaled and 
perhaps of  different character since (50) involves 
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Fig. 3. Dispersion relation shapes. The numbers of the figure correspond to domains of 
Fig. 2. Solid lines - -  correspond to real coO; dotted lines .... correspond to complex 
co 0 . 

6Oo 2 (i.e., second time derivative) in addition to 
COO" 

Another important typical effect of  heat loss 
concerns fresh mixtures with Lewis numbers 
greather than unity (sufficiently heavy limiting 
component  or inerts with a large thermal diffu- 
sivity). Each point of  the domain limited by the 
curves H o = /-/(1)(ll) and /-/(2)(ll) represents 
flames that are stable for all the wavelengths (see 
Figs. 2 and 3b); H o = H(Z)(ll) is also a line of  bi- 
furcation points, but concerning unstable wave- 
lengths around a finite value [2rr/km(Ho) ] (Fig. 
3c) and with a nonzero imaginary rate of  growth 
[Re(coo) > O, Im(coo) :/: 0] .  On the curve H o = 
H(Z)(ll), obtained from ( 4 6 ) b y  numerical means, 
Re(coo) is zero. 

This instability is of  oscillatory kind and cor- 
responds to the growth of transverse traveling 
waves with a dimensionless phase velocity, km - 1  
(Ho)'Im(coo(no)). 

When heat loss increases, the critical Lewis 

number decreases down to/_e = 1 + (18/5/3), which 
is an experimentally accessible value [/~ = 16, l I = 
(18/5) give Le = 1.225]. Thus, near the extinction 
limit, our analysis predicts a new kind of  instabil- 
ity for lean mixtures of  heavy limiting components 
with low diffusion coefficients and/or diluents 
with large thermal diffusivities. To our knowledge, 
self-propagating waves of  this type have not yet 
been observed for this kind of  mixtures. To check 
such behaviors, it would be interesting to perform 
exper iments-wi th  adequate mix tu res -on  cooled 
annular burners of  width slightly greater than the 
quenching distance, and with adjustable ambient 
pressure or mixture strength in order to approach 
the extinction limit. 

APPENDIX: JUMP CONDITIONS ON THE 
REACTIVE SURFACE 

The boundary conditions for the outer solutions 
on both sides of  the reactive surface are obtained 
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by solving the conservation equations (7) and (8) 
inside the reactive sheet and then matching with 
the outer solutions. The inner solutions are ob- 
tained in the form of asymptotic expansions for 
large values of t3. As the thickness of the reactive 
sheet is assumed to be of order t3 - 1 ,  the stretched 
variable r/ = /3x is introduced. The inner profiles 
are sought in the form 

O(x, z, r)  = 1 +/3--1OI(TI,  Z, 7.) 

+/3 2 . 02 (n ,  z, 7.) + O(ff - 3 )  

y(x,  z, r) =/3-1 . Yl(n,  z, 7.) 

+/3--2 . y2(r  L z, 7.) + O(ff-3). (A-l) 

For sufficiently slow and large-scaled perturba- 
tions, (3/37.) ~ (3/3z) = 0(1), the leading orders of  
the conservation equations (7) and (8) take the 
form 

3201 L° 0 1  (A-2) 
- - - -  " Y1 . e  

3772 1 + e2 (3¢ /3z )  2 

and 

32Y1 3 2 0 1  
- -  + l o - 0 ( A - 3 )  

3772 3~ 2 

with the asymptotic behaviors 

r/---> --¢,o : Y1 --~ Woo, O1 -+ --oo. 

Furthermore, it is anticipated that in the down- 
stream field, that is, for 7/-+ +0% Yl goes to zero 
sufficiently quickly to ensure the completion of  
the reaction in the inner zone. As it has been 
shown previously [5],  this implies a reaction order 
less than or equal to unity; for higher reaction 
orders, unburned amounts of the limiting compo- 
nent appear in the burned gases and the problem is 
more difficult. 

With these asymptotic behaviors it is readily 
seen from (A-2) that 01 and Y1 have asymptotes 
for r/-+ _oo and r/-+ +oo. Matching this asymptotic 
behavior with 13 expansions such as (31) for the 

outer solutions O+-(x, z, r) and y-+(x, z, r)  implies 

30 o -  
+ - o o  : Oa - (0, z, r) • 

3x 

and 

-t- 01 - - (0  , Z, 7.) n t" (transc.) (A4)  

~ Y 0 -  
Y1 - (0, z, 7.) • 

3x 

+ Yl -(0,  z, ~') + (transc.) (A-5) 

300 + 
r / - ,  +oo • O1 = - -  (0, z, r)  • 

3x 

+ 01+(0 ,  Z, T) + (transc.) (A-6) 

Y1 = (transc.), (A-7) 

where (transc.) denotes transcendentally small terms~ 
Equations (A-4) and (A-5) imply that 0o - (0 ,  z, 
7.) = 1 and Yo-(0 ,  z, 7.) = 0; (A-6) and (A-7) imply 
that 0o+(0, z, r)  = 1 and yo+(0, z, r)  = y l+(0 ,  
z, r)  = 0. At this stage, it is worthwhile to notice 
that one can choose the origin r~ - 0 for having 
y - ( 0 ,  z, 7.) = 0. All these results correspond to 
(35). 

Furthermore, when the outer downstream solu- 
tion 0o + verifies, as in(27)and(33),(OOo+/3X)x=o = 
0, (A-6) gives 

n "~ -1-oo : O1 = 01+(0 ,  Z, 7") + (transc.). (A-8) 

The integration of (A-3), with the boundary condi- 
tions (A-7) and (A-8), yields 

(Y1 q - / o O 1 )  = / o 0 1 + ( 0 ,  2, 7.). (A-9) 

At the upstream boundary, (A-9), (A-4), and (A-5) 
give 

01- - (0  , 2, 7.) = 01+(0,  g, "r) (A-10) 

30 o -  
3Y°---~ (0, z, r)  = --l o ~ (0, z, r) .  (A-11) 

3x 3x 

Equations (A-10) and (A-11), of  course, also hold 
for the steady solutions; therefore, (36) and the 
first equality in (40) are demonstrated. 
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If (A-9) is used and (A-2) is integrated with the 

boundary condition (A-8) one gets 

a@, 2 

( ) 
~,O~Oeh+(O.z.‘) 

__ z 
a17 i + E-2(aqa2)2 

I 
01-e1+(o,z,T) 

. e”u du. (A-l 2) 
0 

From (A-12) it is readily found that Y1 goes to 

zero exponentially with n + t=, as we supposed at 

the beginning. At the other side, r) + -00, (A-12) 
yields 

When (A-13) is expanded in powers of E, one ob- 
tains 

2 = 2LoZleB1+(o) (A-14) 

for the steady solution e and 

(A-l 5) 

for the x-dependent part of the perturbation 

0 ~ ??. Equation (A-15) is the second equality in 

(40). 
When the differential equations for O2 and Y2 

are investigated, the following asymptotic behaviors 
are obtained: 

a28,’ Q++OO:@2=--_ 
ax (O 2 ’ 

ae,* 
+- ax (0, z, 7) * rl 

+ 8a+(O, z, 7) + (transc.) (~-16) 

f ~~‘(0, z, 7) f (transc.) (A-17) 

in which the coefficients of powers of ~7 were 

found by matching (A-16) and (A-17) with the /I 

expansions of the outer solutions 0*(x, z, T) and 
y’(x, z, 7). When the differential equations for O2 
and Y2 are added, the production term disappears. 
If attention is restricted to the first two terms of 

an E expansion of the last relation, one obtains 

( ) 1-e: -$+Y,)+e.$ 

Once (A-18) is integrated between 1) = fw, (A-4), 

(A-5) (A-16) (A-17) and (35), equation (36) can 
be used to give the following two relations: 

(A-19) 

(coming from the identification of the factors of 

n), and 

4 aYo 

[ 1 

x=o- 
-- - 

lo2 ax x=0+ 
(A-20) 

(coming from the constant terms). Equation 
(A-20) which corresponds to (41) gives the 
zeroth order of the E expansion of e,(O). Indeed, 
using (2’7) (28) and (A-12) in (A-20) one obtains 
for the stationary case: 

8,(O) =--Ho (A-2 1) 
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Equations (A-21) and (A-14) give 2Loloe--Ho = 1, 
which is (16). 

It is worthwhile to notice that (A-20) and 
(A-11) correspond, up to the first two terms of a 
/~ expansion, to the following jump relation 
through the reactive surface: 

FaO-] O- 1 [ a Y l O -  
- -  + - -  = 0 .  

LaxAo+  Le k a x A o  + 
(A-22) 

The authors wish to thank Professor E. Guyon 
and Doctor S. Krishnan for  valuable comments  
and discussions. 

NOMENCLATURE 

A 
B 
c~ 
D 

E 
e 

H(i)(ll) 

H 
i = VrZ1 
Im(  ) 
k 

limiting reactant 
preexponential factor, (3) 
specific heat at constant pressure 
diffusion coefficient of A into the 
mixture 
activation energy, (3) 
2.718... 
functions of 11, defined in the text 
(see Figs. 1 and 2) 
reduced heat-loss coefficient, (12) 
imaginary unit number, (19) 
imaginary part of ( ) 
dimensionless wave number [such 
that (2~r/k)'(X/pUCp) is the wave- 
length] 

kc, kc (1), kc (2) critical values of k; see text and 
Fig. 3 

K heat-loss coefficient, (1) 
L eigenvalue for the steady planar 

nonadiabatic propagation, (11) 
Lad -- (1/2 Le) (1 + 0(/~-1)) adiabatic analog of 

L 
Le = (h/pDCp) = l o + fl--ll 1 + " ' "  + Lewis number 
R universal gas constant 
Re(  ) real part of ( ) 
T temperature 
t time 
U nonadiabatic flame speed (steady 

planar case) 
Uad adiabatic flame speed (steady planar 

case 

V 
W 

~,(x) 

W 
X 

X 

Xt( t ,  Z) 
YA 
Y =YA/YAu  
~(x) 

y(x) 
Yt(r/, z, r) 

Z 
Z = 

material velocity 
source term 
x-dependent part of ( W -  WE, 
0)), equation (22) 
dimensionless source term (10) 
dimensionless longitudinal coordin- 
ate, (6) 
Cartesian coordinate, normal to the 
unperturbed flame front 
equation of the reactive sheet, (5) 
mass fraction of A 
reduced mass fraction of A 
x-dependent part of y - V, equa- 
tion (19) 
y in the steady planar case, (14) 
ith term of the inner/3 expansion of 
y, equation (A-I) 
transverse coordinate 

(Z'pUCp/)Q dimensionless transverse co- 
ordinate 

Greek Symbols 

= [(Tb - T.)/Td 
= a (E/RTb) reduced activation energy 

F = X/1 + 4(600 + ko2), 
Re(I') > 1, equation (47) 

= H 0 - 1 - ( l  1 / 2 ) ,  equation (49) 
A Laplacian operator 
7 gradient 
e dimensionless amplitude of front 

corrugations, (5) 
r~ =/3x 
0 = [ ( T -  Tu)/(Tb - Tu)] reduced temperature 
0(x) x-dependent part of 0 - O, equa- 

tion (19) 
O(x) 0 in the steady planar case, (13) 
Oi(r/, z, r) ith term of the inner /3 expansion 

of 0, equation (A-l) 
wavelength in (~/pUCp) units 
thermal conductivity, (1) 
coefficients defined by (26) 

A = (27r/k) 
X 
p-+ 

7r = 3.1415... 
p density 
o = 1 - H o, equation (50) 
r = t oU2Cp/X dimensionless time, (6) 
¢(Z, t) = (X  t + Ut) 'e  - 1  corrugation of the flame 

front, (S) 
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q~(z,r)  dimensionless corrugation of  the 

flame front 
q. 

X - coefficients defined by (26) 
co amplification coefficient, (19) 

Subscripts 

( ) b  refers to the adiabatic flame tem- 

perature T b 
( )j, ( / =  0, 1, 2 . . . .  ) characterizes t h e j t h  term of  

a/3 expansion 
( )m corresponds to the maximum ampli- 

fication coefficient (Re(coo)) m 
( )u refers to the unburned mixture 

Superscripts 

( ) *  refers to the extinction regime 

(Ho = I)  
( ) -  or ( )+ refer to the upstream and down- 

stream outer zones, respectively 
( ) refers to x-dependent  part of  per- 

turbations 
( - )  refers to the steady planar case 
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