Combust. Theory Modellin@ (1998) 449-477. Printed in the UK PII: S1364-7830(98)94094-3

The role of unequal diffusivities in ignition and extinction
fronts in strained mixing layers

J Daoy and A Lifan

Dpto Motopropulsion y Termofluidodinamica, Universidad FRditica de Madrid, ETSI
Aerorauticos, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain

Received 11 May 1998, in final form 23 September 1998

Abstract. We have studied flame propagation in a strained mixing layer formed between a
fuel stream and an oxidizer stream, which can have different initial temperatures. Allowing
the Lewis numbers to deviate from unity, the problem is first formulated within the framework
of a thermo-diffusive model and a single irreversible reaction. A compact formulation is then
derived in the limit of large activation energy, and solved analytically for high values of the
Damldhler number. Simple expressions describing the flame shape and its propagation velocity
are obtained. In particular, it is found that the Lewis numbers affect the propagation of the triple
flame in a way similar to that obtained in the studies of stretched premixed flames. For example,
the flame curvature determined by the transverse enthalpy gradients in the frozen mixing layer
leads to flame-front velocities which grow with decreasing values of the Lewis numbers.

The analytical results are complemented by a numerical study which focuses on preferential-
diffusion effects on triple flames. The results cover, for different values of the fuel Lewis number,
a wide range of values of the Dafitiler number leading to propagation speeds which vary from
positive values down to large negative values.

1. Introduction

Flame propagation in inhomogeneous mixtures occurs in most practical situations. For
example, spatial non-uniformities in the enthalpy of the reactants are frequently encountered
in unpremixed-combustion devices. Even when such non-uniformities are weak, their impact
on the initiation process and the dynamics of burning is generally important. This is due to
the typical large activation energies of the chemical reactions encountered in combustion,
which make their rates very sensitive to the surrounding conditions. In many instances,
composition and temperature inhomogeneities are essentially transverse to mixing layers,
along which flames can propagate, as in lifted jet diffusion flames. Because the combustible
mixture varies from lean to rich across a mixing layer, triple flames, consisting of two
premixed branches and a trailing diffusion flame, are expected. Therefore, they have been
the subject of a number of experimental, analytical and numerical studies [1-6].

The main purpose of the present investigation is to determine how the propagation of
the triple flame is influenced by transverse enthalpy gradients in the fresh mixture and by
differential diffusion. We shall select for definiteness the strained mixing layer configuration
as a frame for the investigation, and adopt additionally the constant-density approximation
[7] to make the analytical description tractable. The configuration of the study is sketched
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Figure 1. The strained mixing layer configuration. The fuel stream has temperagure fuel
mass fractioryg r and contains no oxidizer. The oxidizer stream has temper@tyran oxidizer
mass fractionyo,o and contains no fuel. The density being assumed constant, the velocity field
considered is a two-dimensional stagnation-point-type flow with compongnis —aY and

v, = aZ on they-axis andz-axis, respectively. We shall study herein flame propagation along
the mixing layer in thec-direction.

in figure 1, where useful notations are introduced. The velocity field considered is a two-
dimensional stagnation-point-type flow with components= —aY¥ andv, = aZ on the
y-axis andz-axis, respectively, where is the strain rate.

We shall examine steady flame propagation along the mixing layer in-tieection,
described by similarity solutions (i.e. temperature and composition fields) which are
independent of the-coordinate and of time if we use a frame of reference attached to
the flame front. In such a frame, the velocity fialchas an additionat-componentl/, the
flame-front velocity, which will be an eigenvalue of the problem, hence (U, —aY, aZ).

The triple flames which we thus analyse will correspondl/if> 0, to ignition fronts,
which extend diffusion flames to the frozen regions of the mixing layer, ob & 0, to
extinction fronts. Our main concern will be the determination of the flame shape and the
front velocity U.

The paper is organized into three parts. The first part is dedicated to a general
formulation of the problem, within the framework of a constant-density model and a single
Arrhenius reaction. Then, in the limit of large activation energy, a compact formulation
is derived and solved analytically for large values of the Dandr number. Finally,
numerical results covering a wide range of the Dahikr number are presented, which
focus on preferential diffusion effects on triple flames.

2. General formulation

The problem addressed herein is the steady propagation of a flame in a strained mixing
layer along thex-axis as sketched in figure 1. For the sake of simplicity, the following
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assumptions are made. The dengitythe thermal conductivity., the heat capacity, and
the individual species diffusion coefficients are assumed to be constant. The combustion is
represented by a single irreversible one-step reaction of the form

F+sOx— P+g¢g

where F denotes the fuel, Ox the oxidizer and P the products. The quantiénotes

the mass of oxidizer consumed apdhe heat released, both per unit mass of fuel. The
combustion rateq, defined as the mass of fuel consumed per unit volume and unit time,
is assumed to follow an Arrhenius law of the form

w = Bp?YeYoexp(—E/RT)

where B, Yk, Yo and E/R represent, respectively, the (constant) pre-exponential factor,
mass fraction of fuel, mass fraction of oxidizer and the activation temperature.

For the existence of a steady flame front propagating the reaction in the mixing layer,
the activation energy of the reaction must be large enough so that, for strain rates between
ignition and extinction values, there are three steady modes of combustion independent of
X in the mixing layer, corresponding to the one-dimensional strained diffusion flame. The
front joins the upper, strongly burning, and lower, weakly burning modes.

The governing equations are

9Ye 9%Yr  9%Ye w 9Ye
Uax =P T ovz)) o Ty
3YO 82Yo 82Yo w BYO
Ul —po (222 4+ 2°9) 5% 44y 20 1
9X °<ax2+aY2 Y TSy @
UaT b 82T+82T 9@ YBT
— = —+ — ——+a¥—.
ax — T\ax2 T avz) T ¢, p Y

Here Dg, Do and Dt denote the diffusion coefficients for the fuel, the oxidizer and for
heat, respectively.

The conditions atX = —oo correspond to the lower, weakly burning solution
independent ofX which, if the activation energy is large enough, is very close to the
frozen solution

Yer
YF,fr = 5

2 [“e”‘(ﬁﬂ
Yoo Y
7))

Yofr = - [1 + erf(
T+ To To — Tr f Y
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where the subscripts F and O refer to the values of the concentrations and temperature on
the fuel side and oxidizer side, respectively. These were used in the boundary conditions
(at Y] - oo, X — —o0) to obtain (2), and must be used [&] — oo for all X. The
subscript ‘fr' is added as a reminder that the values correspond to the fresh (or frozen) side
of the mixing layer. Downstream, foX — oo, the solution again becomes independent of
X, corresponding to the one-dimensional strong-burning solution of the strained diffusion
flame.

Since the flame-front region is expected to be centred around the stoichiometric surface,
we shall use the scaled quantities

Y Y T —T.
F ° and g=—
Tad_ Tst

)

Ty

YF = Yo =
YF,st YO,st



452 J Daou and A Lman

Here the subscript ‘st’ indicates values @& = —oo, Y = Yg), where the stoichiometric
conditionYo s = sYrr holds andlag = Tst+ g Yr st/ cp is the corresponding adiabatic flame
temperature Yy, the location of the upstream stoichiometric surface, is given by

Yt Yot
Serf( —ZDF/a> + erf( —2Do/a> =5-1 3)
whereS = s Yer/ Yo 0.

To describe the problem in a non-dimensional form, we shall select as unit speed the
laminar burning speed of a stoichiometric planar flan®. As unit length, we shall select
L/B, the expected characteristic value of the radius of curvature of the flame front; here
L = /2Dt /a is the thickness of the mixing layer appd= E (Taq— Tst)/RTaZd the Zeldovich
number. The flame-front velocity (measured wif), may be expected to deviate from
one by a factor of order unity wheh/B is of the order of the laminar flame thickness
18 = A/(pcpSE). We shall begin here by giving a general formulation, in which

=B
L/B
will be an important parameter. This formulation will be used in the numerical analysis
described in section 6. Additionally, it will be simplified below into a more compact form,
valid in the limit 8 — oo with € ~ 1, which will be solved analytically in the cases where
the radius of curvature is large compared with the laminar flame thicl(ﬁ,eése. € K1)

In terms of the coordinateg = B(Y — Yg)/L andx = BX/L the non-dimensional
governing equations are

9 e (92 92 . 2e 9
v - —y2F+—y2F —e o4 = m—i—X 2 (4a)
ox Leg \ 0x dy B B/ 0dy
9 e (9 92 - 2 9
v (22000 g S (42 ) 20 (4b)
ax Leo \ 0x ay B B/ dy
90 %0 9% 2¢ v\ 96
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to be solved with the boundary conditions (2), which in termg ¢éke the form
_ 1—erf((s+y/B)vLer)

I 1 — erf(ns/Ler)

_ 1+erf((is+ y/B)v'Leo) (%)
Yo 1+ erf(ns +/Leo)
o erf(ns + y/B) — erf(ns) as x —> —oco or |y — oo.

1 — erf(ns+/Ler)
Here Leg = Dt/Dr and Leo = D1/Do are the Lewis numbers of the fuel and of the
oxidizer, respectively, angs and Y are two non-dimensional parameters characterizing the
location of the stoichiometric surface and the transverse temperature gradient in the frozen
mixturet:

Yt To—Tr
= and Y= —. 6
s V2Dt /a qYeE/cp ©

 We have takers? = (483Yo st (/cp) B exp(—E/RTaqd))Y?, which is the first approximation fg8 > 1 of the
burning speed of a planar flame corresponding to the stoichiometric conditions prevailiXig=at-6o, Y = Ys)
and for unity Lewis numbers.

i The parametets, used in this study instead of the stoichiometric coefficedefined above, is of course related
to S by S erf(nsv/Ler) + erf(nsv/Leo) = S — 1 according to (3).
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Downstream, the solutions correspond to the strongly burning solution of the planar diffusion
flame, independent of. Thus, we shall impose as boundary conditions

dyr _ dyo _ 00 —0
ax  dx  dx
The non-dimensional reaction rateis given by

~ B3 BO -1
w = IYF)’O eXp(m) 8

for x — oo. (7

wherean = (Tag — Tsp)/ Tag IS @ heat-release parameter.

The solution to the above problgmequations (4), (5) and (7), will provide the flame-
front velocity U in terms ofe, Leg, Leg, ns and Y (in addition tog andwy). The results
of the numerical analysis of the cases wheiis not necessarily small is given in section 6.
Specifically, we shall describe there the influence of two parameteand Leg, on triple
flames. The other parameters will be assigned fixed values, and variations in their values
will not be considered in the numerical study. We shall, however, describe in some detail
the limiting case where « 1, corresponding to large values of the Dahler numbet.
To this end, we shall carry out below an asymptotic analysis, where a reformulation of the
problem is obtained in the distinguished lingit— oo with € ~ 1, and solved analytically
for e « 1.

Remark. At this point, the reader who is already familiar with the problem formulation
and notation so far, and who is not interested in the details of the analysis and the derivation
of the results, may move directly to section 7. For his convenience, a short summary of the
main findings is given there.

3. Orders of magnitude of the scales for the different propagation regimes

The problem of triple-flame propagation, as formulated in equations (4), (5) and (7), is
expected to have different regimes including positive and negative flame speeds. These
regimes have been studied in detail by Dold and Hartley (see, e.g., [2, 3]) for unity Lewis
numbers. In this section we shall simply make a few qualitative remarks so as to make
explicit the relevant orders of magnitude in the present notation. For simplicity, we shall
also consider the Lewis numbers to be unity in this qualitative discussion.

The main length scales of the problem under considerationLar& /g, {2 and I,
respectively the mixing layer thickness, the typical radius of curvature of the leading
premixed fron§, the thickness of a stoichiometric planar flame and the preheat thickness of
the curved premixed front. The discussion will be in terms of the parameﬁet%/(L/ﬂ).

The different regimes expected for large valuegare:

1 To a large extent, the results could be viewed as a generalization of those by Dold and Hartley [2, 3] to the
non-unity Lewis numbers cases. Attempts to obtain solutions of similar problems using lumped one-dimensional
approximations can be found in the literature, see [12] and references therein.

1 Arelevant Damkhler numberDa, can be defined as the diffusion time across the mixing lay&tDr = 2271,

divided by the flame transit time (over its thickness)= (/)?/Dr, and henceDa = 2% ~2. Da is also equal

to 2/Ka, whereKa = at_ is the non-dimensional strain or Karlovitz number.

§ Obviously,L/B is also the transverse thickness of the region, where the reaction zones of the leading premixed
front and the trailing diffusion flame lie. This region appears as a semi-infinite surface with a sharp edge situated
at the leading edge of the triple flame on the mixing-layer saale,
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e ¢ < 1. In this regimé the premixed front is quasiplanar, since it is thin, with typical
thickness of ordee relative to its radius of curvature.

e ¢ ~ 1. The preheat zone of the premixed front is of the order of its radius of curvature,
L/B. Then,U ~ 1 so as to ensure a convective—diffusive balance in the preheat zone.

e ¢ ~ BY2. This distinguished regime is obtained when the preheat length becomes of the
order of the mixing layer thicknesg, ~ L. It involves propagation velocities satisfying
the scalinglU ~ 8~/2, which in this regime may be negative or positive.

To justify these conclusions we first note that, fpr~ L, it is appropriate to rescale
the problem by choosind. as the unit length, instead of scaling iy 8 which has led
to equations (4). Thus, in terms of = x/8 and y; = y/8, equation (&), for example,
becomes

BU 936 <329 826) 09  p° ( Bl —1) >
—_— = —=+ —= )+ 2s+ y)— + — expl ——— J.
< 9 oz T o2 (s + y1) oy, T 4e2?F0 Pl 1Ttan@—1)

On the new scale, the problem separates into an outer convective—diffusive region, with
typical size of order unity, and an inner diffusive-reactive region which appears as an
infinitely thin semi-infinite surface with temperature equal to one in a first approximation.
In the outer region, the three first terms of the preceding equation, representing longitudinal
convection, diffusion and strain, respectively, are typically of the same order for distances
of the leading edge of order unity; ~ 1; hence, we havggU/e ~ 1. The solution
of the outer problem is expected to present a square root singularity at the sharp leading
edge, of the formé ~ 1 — C./risin(¢/2) whereC depends on two parameters, namely
C = C(BU/e, ns), the first of which is O(1) in the regime under consideration. Hence,
the temperature gradient at the reaction shegt~ 71, is given by dd/dr1 ~ /B.
Consequently, the thickness of the reaction layer of the premixed f8gntis given by
S1/B ~ B~ or 81, ~ B~%/2. The reactive—diffusive balance in this thin reaction layer can
be written as
2 -1 5
% B p (B2

82 Ade

wheren denotes a coordinate normal to the reaction layer. Henegs8'/? andU ~ pg=%/2,
as advanced.

e ¢ ~ . A steadily propagating triple flame which, for a givenconnects two steady
solutions of the one-dimensional strained diffusion flame, cannot of course exist except
if € is in the range dign, €ex], corresponding to the existence of multiple solutions of
the diffusion flame. Thus, total extinction of the triple flame will occuk iExceeds
€ext» given in order of magnitude by

-1 3
’38—2 ~ % (B~H? and Se~1
E

or eext ~ B. In this regime, and foe < ey, U iS expected to take large negative values
of order 8 [2], which can also be shown by order-of-magnitude arguments similar to
those given above.

1 Of course,e should be larger than a critical valuggn, corresponding to the ignition of the one-dimensional
diffusion flame.

i r is the distance from the leading edge ani$ a polar angle relative to theaxis, such thap = 0 corresponds
to the infinitely thin reaction layer.
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4. Asymptotic analysis for large activation energy ande ~ 1

In this section the distinguished limit — oo, with € ~ 1, is considered. Then the reaction
is confined to an infinitely thin reaction sheet which we shall refer to aglaéinge surface
and which will be given byF' (x, y) = x — f(y) = 0. Upstream, the effects of diffusion and
heat conduction will reach a region wheféy) — x is of order unity. The analysis will be
restricted to the near-equidiffusion cases for whigk= B(Ler — 1) andlo = B(Leo — 1)
are of order 1. Then, appropriate jump conditions can be derived across the reaction sheet
and the problem can be reformulated in a way free from the presenge(sde [8], for
example).

We shall use a coordinate system attached to the flame

E=x—f(y) y=y 9

so that the flame surface is locateckat 0. In terms of the new coordinates the Laplacian
A = 8%/9x? + 3?%/0y? takes the form

I R A P V. (10
B 92 9y2 9E dEDY
In the limit considered, the upstream boundary conditions (5) take the linear form
YF Yo Yo
ye=1—"y yo=1+ "y 0=—y (11)
p 2 B

if the flame-front regiony ~ 1, is considered and terms of ordér? neglected. Heregr,
yo andy, are given by

_ 2exp—nd)
T (- erf(ye)
2exp—n?)
_ 12
YO Jx A+ erf(ny) 12)
2exp(—n?)
Yo

~ /7 (A—er(ne)

The dependent variables will be expanded in termgof as

Ye=yR+ B i+
Yo=y3+B o+ (13)
0=0"+p10 +....

Note that superscripts are used to indicate the different orders of the expansions in terms
of 1. Expansions in terms af to be introduced later will be expressed by subscripts to
avoid confusion. FopB > 1 the reaction zone is thin, of exteft~ ¢/8, so that it can be
described by the diffusive—reactive balance obtained by dropping the convective terms in
(4) and retaining only the first term on the right-hand side of (10).

Since the boundary conditions (11) introduce(fO') non-uniformities in the
concentration of the reactants and their temperature, the corresponding variations in the
burnt gas relative to the uniform case (that is the planar flame case) are also expected to be

T More precisely of ordee. This remark is relevant since the distinguished regime under consideration extends to
values ofe which can be either small or large compared with unity. In this latter casgyst be small compared
with %2, as we shall comment.
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O(B~1). Thus we shall write for the reaction zone and behind it for the burnt gas, i.e. for
£>0:

°=1 =0 =0 (14)
Now definingZg and Zo by
Ze=0+ye Zo=60+yo (15)

it follows from (4) and (9) that

aZ [ 2¢ 0Z 9Z
U—F :6AZ|:—€—FAy|:+— (775+X>|:_F _f/(y)_F:|

0§ p B BJL dy 9§ (16)
Uaﬁ =eAZpo— elg Ayo + 2¢ <775+ X) [aﬁ — f’(y)aﬁ]
i3 B p B/L dy 9§
The expansions ofr and Zo in terms of 8~1 are of the form
Ze=1+B7hE N+ Zo=1+BkE M+ (17)
because the upstream non-uniformitiesyiy yo andé are of orderg—1, so that
0 +y2=1 °+y3=1 (18)
h=6+yt k=6'+y§ (180)

where (1®) defines the excess enthalpy functiongnd k appearing in (17). Behind the
reaction sheet > 0 the reaction ceases because one of the reactants has been depleted.
Thus we can write fo€ > 0:
0t =n yE=0 yo=k—nh (fuel-lean sidek > h)
1

1 _ 1, e (19)
0=k yo=0 YE=h—k (fuel-rich side,k < h).

Now, on using (4), (16) and (17), we obtain the governing equationg%oh andk,
valid at both sides of the reaction shieet

96° 0
U— =€ A0
o0&
oh
UggzeAh+ekAw (20)
ak
U— =€ Ak + eloN6°.
0

Note that the terms associated with strain (the last terms in (4) and (16)) have dropped out
in the preceding equations: those are of ordef, which follows from (1&). The jump
conditions resulting from integration of the quasi-planar reaction—diffusion equations are

[6° = [h] =[k] =0
[ah] [300]
— | ==l —
dE 0
ok 960
L) = o[ 5 @
0
ef/1+ 172 [%] = 1+ 1 — o) expo/2)

1 The last two equations in (20) are, in fact, also valid through the reaction sheet
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to be satisfied at = 0. Here we use the notations
o =0, =h",y) =k, y) (k > h)
o=6;=kO"y)  pu=h0O"y)  (k<h).
The bracket applied to any quantity denotes the difference between the valuegroét
both sides of the reaction sheet, namgly] = v (& = 0", y) — (¢ = 07, y). Also the

boundary conditions & = —oo for 6%, h andk follow from (11), (13) and the definition
of h andk:

0°=0 h=(=ve+vo)y k= (yvo+ve)y as & — —oo. (23)
The boundary conditions &p| — oo andé finite are also given by equations (23). These
are exact solutions of equations (20) and (21), if we restrict our analysis to the only cases
that we consider, wherg, — yr < 0 andyy + yo > 0.

At this point the problem has been reformulated, in terms of the new dependent variables

6°, h andk. A further simplification can be obtained since it is possible to obtaimd k
in terms of a single functiog (&, y) by the relationg

h=(vs — ye)y + Ir(g — 69 k= (ys + yo)y +lo(g — 6° (24)

whereg is continuous and has continuous gradients at the reaction sheet and is governed
by

(22)

g 39°
Uag—eAg—FUag (25)
satisfying the boundary conditiongs— 0 both até — —oo and|y| — oo anddg/d& =0
for &£ - oc.

The perturbation,o, in the premixed flame temperature can be obtained from the
relations (24) and the valug?, of ¢ at £ = 0. Behind the lean and rich branches of
the premixed flame front, there is also a thin diffusion-controlled reaction layer or diffusion
flame located wheré = k or g = gP, with g” being given by (24) for = k and#® = 1.
More explicitly, if A is defined by

A=AE y)=Wr+yvoy+Uo—IpE—-1D (26)

then the thin diffusion-controlled reaction layer is givendy= 0, a relation betweeé and
y, and the fuel-lean region behind the triple flame is givemby 0. However, for brevity,
we shall use the expression fuel-lean side to refer to conditions at the reactiontshe@t,
thus the domain of corresponding taA (0, y) > 0, org = g” andA > 0.

In summary, the limit8 — oo and the assumption that the Lewis numbers are close to
unity allow us to replace the original conservation equations and associated boundary and
jump conditions to be verified by, yr and yo by similar expressions written in terms of
99, g.

Specifically, our task now is to solve the equations

96° o
U@ =ecAf
(27)
dg 300
U= =eAg+U—
€ €

1 Indeed, substitution of the relatios= (y» — yr)y + Ir(h — 6°) andk = (yp + yo)y + lo(k — 69), into the
governing equations fotr andk and their boundary anq jur‘gp conditions shows thaindk are governed by the
same equation and jump and boundary conditions. Thask = g, whereg is as indicated.
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which are valid at both sides of the reaction shdet<{ 0 andé > 0), subject to the
boundary conditiong® = g = 0 até = —oo and at|y| = oo, andd#®/3& = dg/9& = 0 at
& = o0.

The jump conditions to be satisfied &= 0 are

[0° =[g] =0
g
]

0
GW [%] = —(1+ b)"*exp(c/2)

whereo andb are given in terms og”, the value ofg at& = 0, by

o= -y +I@E’' -1 (fuel-lean side) 29)
o= +yo)y+log’ -1 (fuel-rich side)
and
2y — e+ Ir+1
p=T TV, TR0 10 (30)

2 2

At this stage, a comment on the limitations of the reduced model just derived is in order.
Note that the derivation of this model, fg8 — oo with ¢ ~ 1, has involved two
approximations, namely a linearization of the boundary conditions (5) and a neglect of
the strain terms in the governing equations (4). Clearly, the reduced model is not applicable
far downstream, where a balance between transverse diffusion and strain is expected; the
same balance that characterizes the underlying one-dimensional diffusion flame. This will
occur for distances downstream, equal, in order of magnitude, to the flame-front velocity
multiplied by the diffusion time across the mixing layer, that is, in our non-dimensional
notation, fot £ ~ B2. This remark being made, the two approximations mentioned are
justified as long as distances which are small compared to the mixing layer thickness,
y/B < 1, need to be considered. This is so, as long as the preheat zone of the triple-flame
leading front,/,, remains small compared with or, as we have seen in the last section,

€ < BY2. Whene takes values of ordgs'/?, the results of the reduced model are expected

to deviate from those of the original model. In particular, it is easily seen that no solution
with zero propagation velocityl/ = 0, exists for the reduced model (unless frozen), due

to the absence of the strain terms in the governing equations. Thus, no negative values of
U can be obtained, in the frame of the reduced model, by a continuous increageof

small to large values.

5. The limit casese « 1

In the limit ¢ — O, the flame, including its preheat zone, can be viewed as a surface of
discontinuity located a§ = 0. Fore <« 1 the preheat zone upstream of the reaction sheet
is a thin layer of thickness of order Outside this layer, diffusion and heat conduction can
be neglected in a first approximation. For small valueg @fe shall describe the solution

in the form of expansions im of the form f = fo+ € f1, U = Up + € Uy and similar
expansions fop andg written for the different regions.

t More precisely, fog ~ g?/e.
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5.1. Outer solutions on both sides of the flame

For & < 0 and¢ > 0 we seek outer expansions in the form

6°=Op +€Op 4 - - g=Go+eGr1+--- (31)
which we substitute into equations (27). We then obtain in a first approximation
Upd®o/0& = UgdGo/0E = 0. Thus®g and Gy are independent of on both sides of

the flame, althougl®y has a jump across the flame. More precisely, when (14) and the
boundary conditions & = —oco are used, one finds
0 for 0
60 — 0 — 5 < (32)
1 for £€>0

and
g=Go=0 for & <0. (33)

5.2. The structure of the flame

We now analyse the thin region aroud= 0 where diffusive effects should be retained.
To study this zone, we use the stretching transformagica €z. We seek expansions in
the form

90290+€91+-~- g=go+egri+---. (34)
When using these expansions with the jump conditions at the reaction sheet we obtain
[6o] = [80] =0 (3%)
980
—~-l=0 3%
) e
o[ 00°
/14 f [¥ — —(1+ bo) "2 exp(00/2) (35¢0)
and
[01] =[] =0 (369)
981
= l=0 360
) e
001 6o
— | =(A-F)|— 36¢
[a;} ( )[az} (369
whereA and F are defined by
AEE—FL F = foflz. (37)
2 2(1+ byp) 1+ £}
In (35) and (36) we have introduced the expansi®ns og+¢€o1+- - - andb = bo+eby+- - -,
which are simply obtained from (29) once the expansigh = gf + egf + --- is
determined.

Using (34) and the conservation equations (27) written in terms ahd the inner
variable¢ = & /¢ yields to leading order

96 2. 9260
(1 [
an; A+ fo oc2 0 (38)
920 2. 0%g0 96,
Up—=— — (1 -2 = Up—. 38
0%z ( +f°)3§2 0%z (38h)
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The general solution of (3§ is 6o = A + B expa¢), where
Uo
0= —"7
1+ 1y
and A and B are constants to be determined at both sides of the reaction sheet. Thus for
¢ > 0, we must havédy = 1, which is the bounded solution that matches the anticipated
outer solution in the burnt gas (32) (second equation). §ar 0O, the solution must be

6o = exp(a¢) in order to satisfy the matching requirement with the upstream outer solution
(32) (first equation) and the continuity requiremefi] = 0 at¢ = 0. Thus we have

(39)

exp(as) for ¢ <0
bo= 1 for ¢ > 0. (40)

Similarly, go will be independent of for ¢ > 0 so as to be bounded and given by
go = (1 —ag)expas) for ¢<0 (41)

if we use the matching conditions with the upstream solution (33) and the jump condition
(35b). From the definitiong” = g(0, y), it is seen thagl = 1. Also, sincego is continuous
at¢ =0, it follows thatgo = 1 in the burnt gas; > 0.

The jump condition (3§ allows us to determine the local burning spees}) =
Uo/(1 + f;»%?, a quantity that appears as the left-hand side oft)3fter using (39)
and (40). The right-hand side of (85is known, becausey, andbg are now available from
(29), (30) andg{ = 1; namely,

oco=(—Ye+ vy bo = i J; Yo y (fuel-lean side)
0= (Yo + 10) ¥ by = —F ; YO, (fuel-rich side)
Consequently, the local burning speed is given by
: Uo e’ 1+ yy)¥? for y > 0 (fuel-lean) “2)
g 2 @ty for y < 0 (fuel-rich)
where the new parametefsandy are defined by
YF— Yo Ye+ Yo
I'= = 43
YF+ 0 v 2 “3)
and can be expressed in termsngfand Y given in (6) as
2 exp(—n3) 1+ erf(ns)
= and Fr=——@A-7). 44
V=R A—err9?) 2 470 (44)

Equation (42), involving the eigenvalu#, determines the flame shap&(y), in a first
approximation. For fixed values d@f andy, equation (42) admits solutions for infinitely
many values oflUp; but only for a single value of/p, the solution will not present a cusp
(i.e. a discontinuous slope) at its leading edge, as may be expected to be the deessyfor
propagatingtriple flames. This fixes the value @fo, requiring that the derivativgy be

1 The local burning speeflis defined as the component of the fluid velocity ahead of the flame normal to the flame
surface S = (Ui— 2(/B) (ns+y/P)3)-n = U/A+ ' (»)*)2+0(B~1), wheren = (i— f'(y)5)/ A+ f' (y)Y2
is the unit vector normal to the flame pointing to the burnt gas.
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zero at the leading edge—a criterion which has been used by Dold [2]. We thus find that
the velocity of propagation of the triple flame only dependdoand is given by

eT=1/2)
V2T
e-T+1/2)

J2A—1)

This is also the maximum burning speed, obtained at the leading edge located (in a first
approximation) at

for 0<I' <3
Up = (45)

for I<I'<1l

1-2T
a-20 o .
. 2y T
yi= (46)
(1-2T) 1
- =7 I<r<i1
2y (1-1)

It is easy to check that a leading edge exists only for valuek efrictly between 0
and 1. In view of (44), the condition & I' < 1 is always fulfilled whenY = 0, that is,
whenever the fuel side and the oxidizer side have equal temperatures. In the general case,
the condition O< I' < 1, ensuring the existence of a leading edge, can be written in terms
of the paramete®’, and can be shown to be equivalent to the statement that a leading edge
exists only if the temperature at the oxidizer side, and that at the fuel side, are less than the
Burke—Schumann temperature of the diffusion flame in the mixing tayer

5.3. Second approximation for the solution

We have just determined the first approximation to the local burning speed, the triple-flame
propagation velocity and, by using (42), the flame shape. Our aim now is to obtain the next
approximation, that is the following terms in the expansions of these quantities in terms of
¢, and thus the influence of Lewis numbers on the propagation of the triple flame.

From (27) we obtain

891 /2 8291 390
U— - (1 —— = L(6y) — U1— a7
0%5¢ (+‘f°)8§2 (6o) 3¢ (47)

agl 2 82g1 ago 391 390
Up— -1 — =1L —U— 4+ Up— + U1— 48
0%¢ A+ /o 072 (80) Yac + 0%¢ + FF: (48)

whereL is given by
32 d 32

L=2ff—_f'—_ _2¢/#°

Downstream of the reaction sheet it is found tHatis zero so as to be bounded and to
match (32) (second part). Similarly; is found to be independent gffor ¢ > 0. Thus

=0  g1=gf for ¢>0 (49)
where the constang{ is as yet undetermined.

1 It is important to point out that our conclusion about the existence of a leading edge is based on a linearization
about the stoichiometric line, and on the existence of a pedg(n). We shall not discuss here the non-generic
case—in which the temperature of one of the feed streams is hotter than the Burke—Schumann temperature—for
which Sp(y) has no maximum.
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Integration of (47) fron; = —oco to ¢ = 0~ yields

06,
14 f2 [—] =l —U
a+ ) oz ) 1 (50)
Uogf = Ig
where we have introduced the notation
0 0
Iy =/ L(6p) d¢ and I, =/ L(go) dz. (51)

To obtain (50) we have used the continuity requirement)36 replace the values of
61 andg; at¢ = 0~ by those at = 0. We have also used (Bf along with the fact that
the partial derivatives of, and g; with respect to¢ are zero at = —oo on account of
(32) and (33), and at = 0% on account of (49).

From (40) and (41), the integrals in (51) are found to be given by

Iy =2UoF — f§ and I, =—fg.
Then, with the aid of (3¢) and use of (40), equations (50) reduce to
Uogi = —fo

" (52)
UoF — Uy = f§ — UpA
involving gf, the perturbationU; in front velocity and the functionsA and F of y
defined in (37). At this stage we have two equations for three unknowns. However, it
is possible to determine directly the perturbation in flame veloéity,if we use the system
of equations (52) at the leading edge of the flayfe,where F = 0 becausefy(y*) = 0.

Thus we obtain

_ lF (r—lo)/4 1
Uy = [1+2 iy ]ﬁyr (0<r<i)
_ |14 _Uo-lp/4 _ 1
= [1+ 2 " 139y }\/Ey(l r) (3<r<1. (53)

With U; thus determined, we can use again the system of equations (52) for values of
y different from y* to calculateg; and f;.

The results can be used in particular to calculate the next approximation to the normal
burning speeds$, and the temperature along the flame fralt,= 6(¢ = 0%, y).

For the former it is found that

S() = So(») 1 - LF) (54)
where So(y) is given by (42), % = eS;'f"//1+ f;? the flame curvature non-

dimensionalized with the local flame thickneg3;/So(y), andZ a local Markstein length
defined by

lF (p—lo)/4

L=L(y)=1+ at fuel-lean side

2 1+yy
[ lo—1Ip)/4
=14+2— M at fuel-rich side.
2 1+yy
For the flame temperature the following expansion is found:
2y’ [
1- Ly - —Fef(;’(y) at fuel-lean side
_ p BU(T)
OF1 = 2y(1-T) ! (55)
1+ © efe ) at fuel-rich side.

g BULMD)
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The significance of (55) is clear: the first term on the right-hand side, equal to one, is
the flame temperature in the absence of gradients in the fresh mixture, that is the adiabatic
flame temperature of a planar stoichiometric flame. The second term, lineadéescribes
the deviation of flame temperature for an infinitely thin flanae<( 0), resulting from the
linear deviation of mass fractions and of temperature in the fresh mixture from their values
at the stoichiometric location (see the boundary conditions (11)). The third term indicates
the combined effects of flame curvature and differential diffusion. It is zero for unity Lewis
numbers, positive for Lewis numbers less than one, and negative otherwise in agreement
with available knowledge on stretched premixed flames (see, for example, [9, 10]).

We close this section by specifying the location of the stoichiometric surface behind the
premixed flamet > 0, or the position of the diffusion-flame tail of the triple flame!.
This is obtained, to first order ia, by settingA =0, g = g§ + egf andy = ystin (26).
Hence

st _ (lo —IF) ”

Thus, the position of the stoichiometric surface behind the flame is shifted from the upstream

stoichiometric surfacey = 0, if the Lewis numbers of the fuel and oxidizer are different.
Since f” is positive, it is clear that the shift is towards the oxidizer sidédf > Ler.

6. Numerical study

In this section, we present the numerical results for triple-flame propagation corresponding
to values ofe extending over a wide range, up to the extinction values of the underlying
planar diffusion flame. The governing equations solved numerically and their boundary
conditions are given by equations (4), (5) and (7). Those are discretized using a finite-
volume method and solved with a multigrid method [11]. The computational domain extent
in the transverseyf) direction is typically eight times the mixing layer thickness. The
extent in thex-direction is typically 100 times the planar laminar flame thickness. The grid
is a non-uniform rectangular grid with typically 100 000 points.

The main result of the study, in its general form, would be to provide the propagation
velocity U in terms ofe, Leg, Leg, ns, T, an @and 8. In this work, however, we shall only
describe the influence of two parameters, naneeind Lek.

The other parameters will have fixed values, naniedy = 1, ns = 0 (i.e. the upstream
stoichiometric surface is at the centre of the mixing lay&)—= 0 (i.e. a zero tranverse
temperature gradientf = 8 anday, = 0.85.

The results of our analysis will be presented in termg ahdir = 8(Ler — 1). Since
the determination of the propagation velocltyis the main purpose of the work, we shall
begin by giving a synthesis in the form of a plot bf versuse for different values of
Ir. Then the influence of the (fuel-) Lewis number will be examined with more details as
follows. First, we shall compare three cases corresponding to a fixed vakjes 6f 0.5,
but to different values ofr. Second, we shall describe for fixed values/gfhow triple
flames depend oa as this parameter is varied.

Since steadily propagating triple flames are not expecteéxiceeds the extinction value
€ext Of the planar diffusion flamga plot of ey versusig will be useful in the discussion
below. This plot, determined numerically by solving the underlying one-dimensional
problem independent of, is given in figure 2.
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Figure 2. The value ofe corresponding to the extinction of the planar diffusion flarag,
versus/g. The values of the other parameters, kept fixed in the present studygate:8,
lo=0,7s=0,Y =0 andan = 0.85.

6.1. Propagation velocity of the triple flame

Shown in figure 3 is a plot of the propagation eigenvallierersuse for five values of
I, namely,lr = -5, —3, 0, 5 and 10. For each value i, U has been normalized by
the correspondinglanar flame speed, obtained numerically. Common to all cases, is the
existence of a range af with negative flame speeds, as found in previous studies in unity
Lewis number situations under strain [2—4]. The upper limit of this range is, as could be
checked by using figure 2, the valugy of the planar diffusion flame. For illustration
purposes, we have indicated the positionegf with downward arrows on the-axis for
lr=-5,0and 5.

Another important observation, is the change in the behaviou/ ekrsuse asik is
varied. The curves decrease monotonically withs long agg is above a critical negative
value. Whenlg is sufficiently negative (i.eLer sufficiently below one), an important
overshoot in the value df above one is observed, as seenl/foe= —5. The initial increase
of U and its overshoot above one in such (negatiyeases are essentially attributed to the
rise in the flame temperature above one, and thus to the intensification of the reaction at the
premixed front of the triple flame. The physical mechanisms leading to this intensification
are the same as those, well known, encountered in studies of curved and stretched premixed
flames. Obviously, an increase in the local combustion rate does not necessarily lead to
higher values ofU, since, due to flame curvature and to strain, only a part of the heat
released is conducted towards the fresh mixture, in the direction of flame propagation. As
a matter of fact, as we shall see more quantitatively below, zero and even large negative
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Figure 3. Propagation velocity of the triple flamé], versuse for five values oflg: I = -5,
—3, 0, 5 and 10. For each, U has been normalized by the correspondpignar flame
speed, obtained numerically. The values:-péey:, corresponding to the extinction of the planar
diffusion flame (given in figure 2) are indicated by downwards arrows ol-#nds forlp = —5,

0 and 5. (Values of other parametes=8,/0 =0,7s=0,Y =0, o = 0.85.)

values ofU can be obtained in cases where the reaction rate is well above its corresponding
level in a planar configuration.

6.2. A comparative case for fixed

A comparison of three cases correspondinftte —5, 0 and 5, respectively, but to the same
value ofe (e = 0.5) is carried out in figure 4). For each of the three values kfunder
consideration, ten isocontours of the combustion rateare shown. The isocontours are
equidistributed between zero and the corresponding maximum vajyg, also indicated
in the figure. It is seen that the quasiplanar character of the leading premixed front is
progressively lost as the Lewis number is increased. Since the premixed flame is concave
towards the burnt gas side, this is due to the decrease of its normal speed for increasing
values oflg. Also to be noted is the shift of the leading edge and of the trailing diffusion
flame from the upstream stoichiometric surfages 0. In addition to this shift (towards the
oxidizer side iflo > I and to the fuel side otherwise), one would expect a more important
shift in the position of the leading edge in the presence of tranverse temperature gradients
T # 0, which is not included in the present numerical study.

To complement these simple observations we have plotted, in figusgadd €), © (x)
and R(x), respectively, defined as follow®) (x) is the maximum o (x, y) at the location
x asy varies andR (x) = ffooo w(x, y) dy, that is the burning rate per unit surface parallel to
the mixing layer. These two variables provide an overall and simplified description of the
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Figure 4. (a) Comparison fok = 0.5 between three cases corresponding from top to bottom to

I[r = =5, 0 and 5, respectively. Each subfigure represents ten isocontours of the combustion rate,
w, equidistributed between zero and the corresponding maximum vajge(also indicated).

(b) Variation of the peak temperatur€)(x), along the mixing layer for the three cases of
figure 4@), corresponding tdg = —5 (full curve with stars)/g = O (full curve) andig = 5

(full curve with squares)®(x) is defined as the maximum 6{x, y) for the fixed locatiornx as

y varies. €) Combustion rate per unit surface parallel to the mixing lay&r), for the three

cases of §), corresponding td= = —5 (full curve with stars)/r = 0 (full curve) andlg = 5

(full curve with squares)R(x) is defined byR(x) = ffcoo w(x,y)dy.
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Figure 4. Continued.
combustion process in the combustible near-stoichiometric layer whicls, &rl, appears

as a surface when viewed on a length scale of the order of
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Figure 5. (a) Comparison forlg = O between three cases corresponding from top to bottom
to e = 0.2, 175 and 26, respectively. Each subfigure represents seven isocontours of the
combustion ratep, equidistributed between zero and the corresponding maximum vaike

(also indicated). The corresponding propagation velocities (which can be extracted from figure 3)
are equal to B3, 002 and —1.05, respectively. k) Peak temperature@(x), and peak
combustion rate2(x) versusx, corresponding frame by frame to the subfiguresajf (The
definition of 2 (x) is similar to that of® (x). (c) Peak temperature)(x), and combustion rate

per unit surface parallel to the mixing layeR(x) versusx, corresponding frame by frame to

the subfigures ofg). The definition of®(x) and R(x) is as in figure 4.
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Figure 5. Continued.

layer thickness We simply note in figure 4) the differences in the slopes 6f(x) at the
downstream side of the premixed front, dependindmwvarying from a positive value to a
negative one ak is increased. No further comments will be made here in connection with
figures 4b) and ¢€), since similar comments, depending on the value,ofill be given in

the next subsection.

6.3. Dependence anfor a given Lewis number

In this section we study the dependenceeofior three fixed values of-. We begin with
the results relative té = 0, given in figures ¥)—(c).

1 Such variables can be useful in simplified one-dimensional models as in [12].
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Figure 5. Continued.

Shown in figure 54) are three subfigures corresponding, from top to bottora,+00.2,
1.75 and 26, respectively. The values ef are chosen such that the leading front is
moderately curved, its propagation velocity is close to zero, or that it is retreating in
conditions close to the extinction of the diffusion flame~ ee, from top to bottom,
respectively. Each subfigure represents seven isocontours of the combustiomw,rate,
equidistributed between zero and the corresponding maximum valge also indicated.
The propagation velocities corresponding to these three cases, which can be extracted from
figure 3, are indicated in the captions. The triple-flame shapes observet asried are
familiar from previous studies. Note that the maximum valuepfomax, remains constant,
as can also be seen in figurébh(where®(x) (introduced above) anf(x) are plotted.
Here Q(x) is defined as the maximum af(x, y) asy varies. The temperature at the hot
side decreases from one, its expected maximum value fer 0, ase is increased. This
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Figure 6. (a) Comparison follr = 5 between three cases corresponding from top to bottom to
¢ = 0.2, 1 and 16, respectively. Each figure represents seven isocontours of the combustion
rate, w, equidistributed between zero and the corresponding maximum alge(indicated).

The corresponding propagation velocities are equal. 70,0003 and—0.72, respectively. k)

Peak temperature®) (x), and peak combustion rat(x) versusx, corresponding frame by
frame to the subfigures o&j.
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decrease is not inconsisténtith the constancy immax mentioned except whehfalls by a
critical amount, of ordep—1, below unity. In that case the reaction is quenched everywhere
and both the temperature and the combustion rate fall towards their frozen values. This will
happen ife is increased above.:. Finally, figure 5€) is similar to figure 5), except that
the global rater(x) defined above is used insteadwfx).

Differential-diffusion effects could be appreciated by comparing the case just presented,
corresponding tdr = 0, with two cases represented in figures 6 and 7, and corresponding

1 Indeed forLer = Leog = 1, yo + 0 and yg + 6 are conserved scalars which are easily determined. More
precisely,yo +6 = 1+ erf(y/B) andye +6 = 1 — erf(y/B), for Y = 0. Then,ns being taken equal to zero,
one obtainsat the symmetry axjsy = 0, the relationsyo = 1 -6 andyr = 1 — 6, so that,w(x,y = 0) is a
function of 6 alone. Consequently, the spatial maximumeofs equal to the maximum of the functian(9),
which corresponds to a given fixed valug, independent of the problem. This is so unlésklls everywhere
below 6*.
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Figure 7. (a) Comparison folg = —5 between three cases corresponding from top to bottom to

e = 0.3, 65 and 9, respectively. Each subfigure represents seven isocontours of the combustion
rate, w, equidistributed between zero and the corresponding maximum vglge (indicated).

The corresponding propagation velocities are equal.5d,1020 and—3.04, respectively. k)

Peak temperature®) (x), and peak combustion rat(x) versusx, corresponding frame by
frame to the cases o#].

to Ir = 5 and/r = —5, respectively. The choice of the values @fand the notations,
demonstrated in the captions, are similar to those introduced above and need not be repeated.
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It can be noted that, irrespective &f the evolution of the shape of the triple flames
as their propagation velocities decrease is roughly the same, despite their shift towards the
fuel side for/r > 0 and to the oxidizer side fdg < 0. However, important differences are
observed with respect to the profiles in flame temperature behind the premixed front, which
depend ore. For example, as seen in figurebp(for /[ = 5, the flame temperature tends
by decreasing values to its asymptotic value, corresponding to the planar diffusion flame,
asx — oo, whene is small; for largere, it increases towards its asymptotic value. The
opposite trend is observed in figureby(for [ = —5. These observations are explained as
follows.

In the limit ¢ — 0, the leading premixed front tends to be locally planar, and its
burning temperature at the stoichiometric location tends to one irrespective of the value of
the Lewis number. In contrast, in the same limit, the diffusion flame far downstream, which
corresponds to the Burke—Schumann one-dimensional planar diffusion flame, has a burning
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temperature and position both depending on the Lewis number. To be more explicit, the
position of the Burke—Schumann diffusion flame, sqyand its burning temperature, say
0%, can be expressed in our notation by
JT

9f =1 4/3 and Vi = 8 l|: (57)
if 8> 1 and, as in the numerical study; = 0, Y = 0 andLec = 1 are adopted This
difference in the burning temperature at the leading front and at the diffusion tail explains
the influence ofr on the slope 0P for € > 0, whene is small. Ase is increased, the
temperature of the diffusion tail decreases witlisee figures %), 6(b) and 7)), while
that of the leading front can increase due to flame curvatuie 4 0 (figure 7p)). It is
interesting to note that even negative value#/aire obtained, foe close toeex, wWith flame
temperatures and combustion rates well above their values in the planar case (figure 7(

7. Quick reference to main results

This section provides a quick reference to the main results, and could be read directly
after section 2, where the scaling which leads to the governing equations (4), (5) and (7)
is detailed. In particular, we recall that the reference length and speed have been taken
as Lt = L/B and Uyer = SP, where L = /2Dt/a is the mixing layer thickness, and

B and S? are the Zeldovich number and the planar laminar flame speed corresponding to
the stoichiometric conditions in the frozen mixture. Of particular importance to the present
discussion are the non-dimensional parametergs and Y. The first one, defined by

€ = 12/ Ly, represents the (planar) flame thicknéds= D+/S? relative to the reference
length, thus small values ef correspond to thin flames or large Daititer numbers. The
second and third, defined by (6), represent the non-dimensional location of the upstream
stoichiometric surfadeand the non-dimensional difference in the feed temperatures of the
fuel and oxidizer streams, respectively. Actually, the parametgend Y appear in the
analytical results in the form of two simple combinations, given in (44), namely

2
, - 2 exp(—n3) i and po 1t erf(ns)
V7 (1 — erf(ns)?) 2
For ¢ « 1, the results are expressed as expansions in terms ofn particular, the
propagation velocity (the main quantity to be determined) is writtety as Up + €Us.
To leading order[J is found to depend on the single paramdterUy = Up(I"). This
dependence is given by (45), a simple expression which showd/that larger than or

1-7).

1 Equations (57) can be obtained as follows. The governing equations for the underlying one-dimensional
diffusion flame are given by (4) in which derivatives with respectxtare discarded. The corresponding
boundary conditions foiy| — oo are obtained from (5). Foleo = 1 and Y = 0, they are given by

0 = yo = yr — 2(1 — erf(ysLer’®))~t = 0 aty = —oo, andé = yr = yo — 2(1 + erf(ns)) "L = 0 aty = o.

Then, the conserved scalas + 6 is found to be equal t61 + erf(ys+ y/B)) (1 + erf(ns)) 1, and hence the flame
temperatureds is given, in the limit of infinitely fast chemistry, bg; = (1 + erf(ys + yt/8))(1 + erf(ns)) 1,

where ys is the position of the reaction sheet, separating the oxygen from the fuel. To deteyming

and yr are found at both sides of the reaction sheet by solving chemistry-free equations and using the
boundary conditions aty| = oo, just given, along withyr(y;) = yo(yf) = 0. Then, the jump condition
(dye/dy)(3) = —Ler (dyo/dy)(3") yields the relation(1+erf(ns)) 1 (1—erf(ns+ys/ )~ exp(— (ns+yt/B)?) =
LegY2(1 — erf(nsLe®)"2(1 + erf((ns + yr/B) Ler'?) =L exp(—(ns + yi/B)?Ler). This relation, along with the

one expressings is terms ofys given above, determine, in an implicit form, the position and temperature of the
flame. In the particular casgs = 0, these relations simplify, fo > 1 andir = B(Ler — 1) = O(1), to the
explicit form (57).

i See the footnote to equation (6).
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equal to one (i.e. the stoichiometric planar flame value), accounting in particular for unequal
feed temperatures. Also there is a shift in the location of the leading edge of the flame
away from the upstream stoichiometric surface, given to leading ordef lgtermined in

(46).

To compute the next approximatioti; can be evaluated from (53) where it is seen to
depend o, y, and on the reduced Lewis numbéts= S(Ler — 1) andip = B(Leo — 1).

Similarly, the local normal flame speed to leading ord®gfy), is given by (42), which
also determines the flame shape in a first approximatfgn,Then, two terms expansions
are available for the normal speegly), and for the flame temperatur@; (y), from (54)
and (55).

For illustration, consider the case correspondingnto= Y = 0 (i.e. the frozen
stoichiometric surface is at the centre of the mixing layer and the feed temperatures are
equal). Thenl" = % y = 2/, y* = 0 (from equation (46)) and the propagation speed
calculated from (45) and (53) is given by

U=1-(1+3( +lo))\/ge.

Finally, a synthetic presentation of the numerical results describing the propagation
velocity of the triple flame for values efwhich are not necessarily small is given in figure 3
for different values of the fuel Lewis nhumber and a fixed set of the other parameters (see
captions).

8. Conclusion

In this study, triple-flame propagation in a strained reactive mixing layer with possibly
unequal feed temperatures and non-unity Lewis numbers has been considered. The problem
has been formulated within the framework of a constant-density model and an overall
Arrhenius reaction. In the formulation, an important non-dimensional parametertlie
ratio of the thickness of the planar stoichiometric flame to the characteristic size of the
flame-front region. Numerical results describing, for different fixed values of the fuel Lewis
number and growing values ef the variation of the propagation velocity from positive
to negative and of the front from ignition front to extinction front of the strained diffusion
flame have been presented.

Special attention has been devoted to the distinguished Hmit co with € ~ 1. In
this limit, a simplified formulation has been derived, and solved analytically fex 1.
In particular, simple expressions determining the propagation speed of the triple flame, the
local burning rate and the flame shape have been obtained.
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