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Abstract. We have studied flame propagation in a strained mixing layer formed between a
fuel stream and an oxidizer stream, which can have different initial temperatures. Allowing
the Lewis numbers to deviate from unity, the problem is first formulated within the framework
of a thermo-diffusive model and a single irreversible reaction. A compact formulation is then
derived in the limit of large activation energy, and solved analytically for high values of the
Damk̈ohler number. Simple expressions describing the flame shape and its propagation velocity
are obtained. In particular, it is found that the Lewis numbers affect the propagation of the triple
flame in a way similar to that obtained in the studies of stretched premixed flames. For example,
the flame curvature determined by the transverse enthalpy gradients in the frozen mixing layer
leads to flame-front velocities which grow with decreasing values of the Lewis numbers.

The analytical results are complemented by a numerical study which focuses on preferential-
diffusion effects on triple flames. The results cover, for different values of the fuel Lewis number,
a wide range of values of the Damköhler number leading to propagation speeds which vary from
positive values down to large negative values.

1. Introduction

Flame propagation in inhomogeneous mixtures occurs in most practical situations. For
example, spatial non-uniformities in the enthalpy of the reactants are frequently encountered
in unpremixed-combustion devices. Even when such non-uniformities are weak, their impact
on the initiation process and the dynamics of burning is generally important. This is due to
the typical large activation energies of the chemical reactions encountered in combustion,
which make their rates very sensitive to the surrounding conditions. In many instances,
composition and temperature inhomogeneities are essentially transverse to mixing layers,
along which flames can propagate, as in lifted jet diffusion flames. Because the combustible
mixture varies from lean to rich across a mixing layer, triple flames, consisting of two
premixed branches and a trailing diffusion flame, are expected. Therefore, they have been
the subject of a number of experimental, analytical and numerical studies [1–6].

The main purpose of the present investigation is to determine how the propagation of
the triple flame is influenced by transverse enthalpy gradients in the fresh mixture and by
differential diffusion. We shall select for definiteness the strained mixing layer configuration
as a frame for the investigation, and adopt additionally the constant-density approximation
[7] to make the analytical description tractable. The configuration of the study is sketched
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Figure 1. The strained mixing layer configuration. The fuel stream has temperatureTF, a fuel
mass fractionyF,F and contains no oxidizer. The oxidizer stream has temperatureTO, an oxidizer
mass fractionyO,O and contains no fuel. The density being assumed constant, the velocity field
considered is a two-dimensional stagnation-point-type flow with componentsvy = −aY and
vz = aZ on they-axis andz-axis, respectively. We shall study herein flame propagation along
the mixing layer in thex-direction.

in figure 1, where useful notations are introduced. The velocity field considered is a two-
dimensional stagnation-point-type flow with componentsvy = −aY and vz = aZ on the
y-axis andz-axis, respectively, wherea is the strain rate.

We shall examine steady flame propagation along the mixing layer in thex-direction,
described by similarity solutions (i.e. temperature and composition fields) which are
independent of thez-coordinate and of time if we use a frame of reference attached to
the flame front. In such a frame, the velocity fieldv has an additionalx-component,U , the
flame-front velocity, which will be an eigenvalue of the problem, hencev = (U,−aY, aZ).
The triple flames which we thus analyse will correspond, ifU > 0, to ignition fronts,
which extend diffusion flames to the frozen regions of the mixing layer, or, ifU < 0, to
extinction fronts. Our main concern will be the determination of the flame shape and the
front velocityU .

The paper is organized into three parts. The first part is dedicated to a general
formulation of the problem, within the framework of a constant-density model and a single
Arrhenius reaction. Then, in the limit of large activation energy, a compact formulation
is derived and solved analytically for large values of the Damköhler number. Finally,
numerical results covering a wide range of the Damköhler number are presented, which
focus on preferential diffusion effects on triple flames.

2. General formulation

The problem addressed herein is the steady propagation of a flame in a strained mixing
layer along thex-axis as sketched in figure 1. For the sake of simplicity, the following
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assumptions are made. The densityρ, the thermal conductivityλ, the heat capacitycp and
the individual species diffusion coefficients are assumed to be constant. The combustion is
represented by a single irreversible one-step reaction of the form

F+ sOx→ P+ q
where F denotes the fuel, Ox the oxidizer and P the products. The quantitys denotes
the mass of oxidizer consumed andq the heat released, both per unit mass of fuel. The
combustion rate,ω, defined as the mass of fuel consumed per unit volume and unit time,
is assumed to follow an Arrhenius law of the form

ω = Bρ2YFYO exp(−E/RT )
where B,YF, YO and E/R represent, respectively, the (constant) pre-exponential factor,
mass fraction of fuel, mass fraction of oxidizer and the activation temperature.

For the existence of a steady flame front propagating the reaction in the mixing layer,
the activation energy of the reaction must be large enough so that, for strain rates between
ignition and extinction values, there are three steady modes of combustion independent of
X in the mixing layer, corresponding to the one-dimensional strained diffusion flame. The
front joins the upper, strongly burning, and lower, weakly burning modes.

The governing equations are

U
∂YF

∂X
= DF

(
∂2YF

∂X2
+ ∂

2YF

∂Y 2

)
− ω
ρ
+ aY ∂YF

∂Y

U
∂YO

∂X
= DO

(
∂2YO

∂X2
+ ∂

2YO

∂Y 2

)
− s ω

ρ
+ aY ∂YO

∂Y

U
∂T

∂X
= DT

(
∂2T

∂X2
+ ∂

2T

∂Y 2

)
+ q

cp

ω

ρ
+ aY ∂T

∂Y
.

(1)

HereDF, DO andDT denote the diffusion coefficients for the fuel, the oxidizer and for
heat, respectively.

The conditions atX = −∞ correspond to the lower, weakly burning solution
independent ofX which, if the activation energy is large enough, is very close to the
frozen solution

YF,fr = YF,F

2

[
1− erf

(
Y√

2DF/a

)]
YO,fr = YO,O

2

[
1+ erf(

Y√
2DO/a

)]
(2)

Tfr = TF+ TO

2
+ TO− TF

2
erf

(
Y√

2DT/a

)
where the subscripts F and O refer to the values of the concentrations and temperature on
the fuel side and oxidizer side, respectively. These were used in the boundary conditions
(at |Y | → ∞, X → −∞) to obtain (2), and must be used at|Y | → ∞ for all X. The
subscript ‘fr’ is added as a reminder that the values correspond to the fresh (or frozen) side
of the mixing layer. Downstream, forX→∞, the solution again becomes independent of
X, corresponding to the one-dimensional strong-burning solution of the strained diffusion
flame.

Since the flame-front region is expected to be centred around the stoichiometric surface,
we shall use the scaled quantities

yF = YF

YF,st
yO = YO

YO,st
and θ = T − Tst

Tad− Tst
.
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Here the subscript ‘st’ indicates values at(X = −∞, Y = Yst), where the stoichiometric
conditionYO,fr = sYF,fr holds andTad≡ Tst+ qYF,st/cp is the corresponding adiabatic flame
temperature.Yst, the location of the upstream stoichiometric surface, is given by

S erf

(
Yst√

2DF/a

)
+ erf

(
Yst√

2DO/a

)
= S − 1 (3)

whereS ≡ s YF,F/YO,O.
To describe the problem in a non-dimensional form, we shall select as unit speed the

laminar burning speed of a stoichiometric planar flame†, S0
L. As unit length, we shall select

L/β, the expected characteristic value of the radius of curvature of the flame front; here
L = √2DT/a is the thickness of the mixing layer andβ ≡ E(Tad−Tst)/RT

2
ad the Zeldovich

number. The flame-front velocity (measured withS0
L), may be expected to deviate from

one by a factor of order unity whenL/β is of the order of the laminar flame thickness
l0Fl ≡ λ/(ρcpS

0
L). We shall begin here by giving a general formulation, in which

ε ≡ l0Fl

L/β

will be an important parameter. This formulation will be used in the numerical analysis
described in section 6. Additionally, it will be simplified below into a more compact form,
valid in the limit β →∞ with ε ∼ 1, which will be solved analytically in the cases where
the radius of curvature is large compared with the laminar flame thicknessl0Fl (i.e. ε � 1).

In terms of the coordinatesy ≡ β(Y − Yst)/L and x ≡ βX/L the non-dimensional
governing equations are

U
∂yF

∂x
= ε

LeF

(
∂2yF

∂x2
+ ∂

2yF

∂y2

)
− ε−1ω̃ + 2ε

β

(
ηs + y

β

)
∂yF

∂y
(4a)

U
∂yO

∂x
= ε

LeO

(
∂2yO

∂x2
+ ∂

2yO

∂y2

)
− ε−1ω̃ + 2ε

β

(
ηs + y

β

)
∂yO

∂y
(4b)

U
∂θ

∂x
= ε

(
∂2θ

∂x2
+ ∂

2θ

∂y2

)
+ ε−1ω̃ + 2ε

β

(
ηs + y

β

)
∂θ

∂y
, (4c)

to be solved with the boundary conditions (2), which in terms ofy take the form

yF = 1− erf((ηs+ y/β)
√
LeF)

1− erf(ηs
√
LeF)

yO = 1+ erf((ηs+ y/β)
√
LeO)

1+ erf(ηs
√
LeO)

θ = ϒ erf(ηs+ y/β)− erf(ηs)

1− erf(ηs
√
LeF)

as x →−∞ or |y| → ∞.

(5)

Here LeF ≡ DT/DF and LeO ≡ DT/DO are the Lewis numbers of the fuel and of the
oxidizer, respectively, andηs andϒ are two non-dimensional parameters characterizing the
location of the stoichiometric surface and the transverse temperature gradient in the frozen
mixture‡:

ηs ≡ Yst√
2DT/a

and ϒ ≡ TO− TF

qYF,F/cp
. (6)

† We have takenS0
L = (4β−3YO,st (λ/cp) B exp(−E/RTad))

1/2, which is the first approximation forβ � 1 of the
burning speed of a planar flame corresponding to the stoichiometric conditions prevailing at (X = −∞, Y = Yst)

and for unity Lewis numbers.
‡ The parameterηs, used in this study instead of the stoichiometric coefficientS defined above, is of course related
to S by S erf(ηs

√
LeF)+ erf(ηs

√
LeO) = S − 1 according to (3).
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Downstream, the solutions correspond to the strongly burning solution of the planar diffusion
flame, independent ofx. Thus, we shall impose as boundary conditions

∂yF

∂x
= ∂yO

∂x
= ∂θ

∂x
= 0 for x →∞. (7)

The non-dimensional reaction ratẽω is given by

ω̃ = β3

4
yFyO exp

(
β(θ − 1)

1+ αh(θ − 1)

)
(8)

whereαh ≡ (Tad− Tst)/Tad is a heat-release parameter.
The solution to the above problem†, equations (4), (5) and (7), will provide the flame-

front velocityU in terms ofε, LeF, LeO, ηs andϒ (in addition toβ andαh). The results
of the numerical analysis of the cases whereε is not necessarily small is given in section 6.
Specifically, we shall describe there the influence of two parameters,ε andLeF, on triple
flames. The other parameters will be assigned fixed values, and variations in their values
will not be considered in the numerical study. We shall, however, describe in some detail
the limiting case whereε � 1, corresponding to large values of the Damköhler number‡.
To this end, we shall carry out below an asymptotic analysis, where a reformulation of the
problem is obtained in the distinguished limitβ →∞ with ε ∼ 1, and solved analytically
for ε � 1.

Remark. At this point, the reader who is already familiar with the problem formulation
and notation so far, and who is not interested in the details of the analysis and the derivation
of the results, may move directly to section 7. For his convenience, a short summary of the
main findings is given there.

3. Orders of magnitude of the scales for the different propagation regimes

The problem of triple-flame propagation, as formulated in equations (4), (5) and (7), is
expected to have different regimes including positive and negative flame speeds. These
regimes have been studied in detail by Dold and Hartley (see, e.g., [2, 3]) for unity Lewis
numbers. In this section we shall simply make a few qualitative remarks so as to make
explicit the relevant orders of magnitude in the present notation. For simplicity, we shall
also consider the Lewis numbers to be unity in this qualitative discussion.

The main length scales of the problem under consideration areL, L/β, l0F and lh,
respectively the mixing layer thickness, the typical radius of curvature of the leading
premixed front§, the thickness of a stoichiometric planar flame and the preheat thickness of
the curved premixed front. The discussion will be in terms of the parameterε ≡ l0Fl/(L/β).
The different regimes expected for large values ofβ are:

† To a large extent, the results could be viewed as a generalization of those by Dold and Hartley [2, 3] to the
non-unity Lewis numbers cases. Attempts to obtain solutions of similar problems using lumped one-dimensional
approximations can be found in the literature, see [12] and references therein.
‡ A relevant Damk̈ohler number,Da, can be defined as the diffusion time across the mixing layer,L2/DT = 2a−1,
divided by the flame transit time (over its thickness),tL = (l0Fl)

2/DT, and henceDa = 2β2ε−2. Da is also equal
to 2/Ka, whereKa = atL is the non-dimensional strain or Karlovitz number.
§ Obviously,L/β is also the transverse thickness of the region, where the reaction zones of the leading premixed
front and the trailing diffusion flame lie. This region appears as a semi-infinite surface with a sharp edge situated
at the leading edge of the triple flame on the mixing-layer scale,L.
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• ε � 1. In this regime† the premixed front is quasiplanar, since it is thin, with typical
thickness of orderε relative to its radius of curvature.

• ε ∼ 1. The preheat zone of the premixed front is of the order of its radius of curvature,
L/β. Then,U ∼ 1 so as to ensure a convective–diffusive balance in the preheat zone.

• ε ∼ β1/2. This distinguished regime is obtained when the preheat length becomes of the
order of the mixing layer thickness,lh ∼ L. It involves propagation velocities satisfying
the scalingU ∼ β−1/2, which in this regime may be negative or positive.

To justify these conclusions we first note that, forlh ∼ L, it is appropriate to rescale
the problem by choosingL as the unit length, instead of scaling byL/β which has led
to equations (4). Thus, in terms ofx1 = x/β and y1 = y/β, equation (4c), for example,
becomes

βU

ε

∂θ

∂x1
=
(
∂2θ

∂x2
1

+ ∂
2θ

∂y2
1

)
+ 2(ηs+ y1)

∂θ

∂y1
+ β5

4ε2
yFyO exp

(
β(θ − 1)

1+ αh(θ − 1)

)
.

On the new scale, the problem separates into an outer convective–diffusive region, with
typical size of order unity, and an inner diffusive–reactive region which appears as an
infinitely thin semi-infinite surface with temperature equal to one in a first approximation.
In the outer region, the three first terms of the preceding equation, representing longitudinal
convection, diffusion and strain, respectively, are typically of the same order for distances
of the leading edge of order unity,x1 ∼ 1; hence, we haveβU/ε ∼ 1. The solution
of the outer problem is expected to present a square root singularity at the sharp leading
edge, of the form‡ θ ∼ 1− C√r1 sin(φ/2) whereC depends on two parameters, namely
C = C(βU/ε, ηs), the first of which is O(1) in the regime under consideration. Hence,
the temperature gradient at the reaction sheet,r1 ∼ β−1, is given by ∂θ/∂r1 ∼

√
β.

Consequently, the thickness of the reaction layer of the premixed front,δ1r, is given by
δ1r
√
β ∼ β−1 or δ1r ∼ β−3/2. The reactive–diffusive balance in this thin reaction layer can

be written as

∂2θ

∂n2
∼ β−1

δ2
1r

∼ β5

4ε2
(β−1)2

wheren denotes a coordinate normal to the reaction layer. Henceε ∼ β1/2 andU ∼ β−1/2,
as advanced.

• ε ∼ β. A steadily propagating triple flame which, for a givenε, connects two steady
solutions of the one-dimensional strained diffusion flame, cannot of course exist except
if ε is in the range [εign, εext], corresponding to the existence of multiple solutions of
the diffusion flame. Thus, total extinction of the triple flame will occur ifε exceeds
εext, given in order of magnitude by

β−1

δ2
E

∼ β3

ε2
(β−1)2 and δE ∼ 1

or εext ∼ β. In this regime, and forε < εext, U is expected to take large negative values
of orderβ [2], which can also be shown by order-of-magnitude arguments similar to
those given above.

† Of course,ε should be larger than a critical value,εign, corresponding to the ignition of the one-dimensional
diffusion flame.
‡ r1 is the distance from the leading edge andφ is a polar angle relative to thex-axis, such thatφ = 0 corresponds
to the infinitely thin reaction layer.
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4. Asymptotic analysis for large activation energy andε ∼ 1

In this section the distinguished limitβ →∞, with ε ∼ 1, is considered. Then the reaction
is confined to an infinitely thin reaction sheet which we shall refer to as theflame surface,
and which will be given byF(x, y) = x−f (y) = 0. Upstream, the effects of diffusion and
heat conduction will reach a region wheref (y)− x is of order unity†. The analysis will be
restricted to the near-equidiffusion cases for whichlF ≡ β(LeF − 1) and lO ≡ β(LeO − 1)
are of order 1. Then, appropriate jump conditions can be derived across the reaction sheet
and the problem can be reformulated in a way free from the presence ofβ (see [8], for
example).

We shall use a coordinate system attached to the flame

ξ = x − f (y) y = y (9)

so that the flame surface is located atξ = 0. In terms of the new coordinates the Laplacian
1 = ∂2/∂x2+ ∂2/∂y2 takes the form

1 = (1+ f ′2) ∂
2

∂ξ2
+ ∂2

∂y2
− f ′′ ∂

∂ξ
− 2f ′

∂

∂ξ∂y
. (10)

In the limit considered, the upstream boundary conditions (5) take the linear form

yF = 1− γF

β
y yO = 1+ γO

β
y θ = γθ

β
y (11)

if the flame-front region,y ∼ 1, is considered and terms of orderβ−2 neglected. HereγF,
γO andγθ are given by

γF = 2exp(−η2
s)√

π (1− erf(ηs))

γO = 2exp(−η2
s)√

π (1+ erf(ηs))

γθ = 2exp(−η2
s)√

π (1− erf(ηs))
ϒ.

(12)

The dependent variables will be expanded in terms ofβ−1 as

yF = y0
F + β−1y1

F + · · ·
yO = y0

O+ β−1y1
O+ · · ·

θ = θ0+ β−1θ1+ · · · .
(13)

Note that superscripts are used to indicate the different orders of the expansions in terms
of β−1. Expansions in terms ofε to be introduced later will be expressed by subscripts to
avoid confusion. Forβ � 1 the reaction zone is thin, of extentξ ∼ ε/β, so that it can be
described by the diffusive–reactive balance obtained by dropping the convective terms in
(4) and retaining only the first term on the right-hand side of (10).

Since the boundary conditions (11) introduce O(β−1) non-uniformities in the
concentration of the reactants and their temperature, the corresponding variations in the
burnt gas relative to the uniform case (that is the planar flame case) are also expected to be

† More precisely of orderε. This remark is relevant since the distinguished regime under consideration extends to
values ofε which can be either small or large compared with unity. In this latter case,ε must be small compared
with β1/2, as we shall comment.
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O(β−1). Thus we shall write for the reaction zone and behind it for the burnt gas, i.e. for
ξ > 0:

θ0 = 1 y0
F = 0 y0

O = 0. (14)

Now definingZF andZO by

ZF ≡ θ + yF ZO ≡ θ + yO (15)

it follows from (4) and (9) that

U
∂ZF

∂ξ
= ε 1ZF− ε lF

β
1yF+ 2ε

β

(
ηs+ y

β

)[
∂ZF

∂y
− f ′(y)∂ZF

∂ξ

]
U
∂ZO

∂ξ
= ε 1ZO− ε lO

β
1yO+ 2ε

β

(
ηs+ y

β

)[
∂ZO

∂y
− f ′(y)∂ZO

∂ξ

]
.

(16)

The expansions ofZF andZO in terms ofβ−1 are of the form

ZF = 1+ β−1 h(ξ, y)+ · · · ZO = 1+ β−1 k(ξ, y)+ · · · (17)

because the upstream non-uniformities inyF, yO andθ are of orderβ−1, so that

θ0+ y0
F = 1 θ0+ y0

O = 1 (18a)

h ≡ θ1+ y1
F k ≡ θ1+ y1

O (18b)

where (18b) defines the excess enthalpy functionsh and k appearing in (17). Behind the
reaction sheetξ > 0 the reaction ceases because one of the reactants has been depleted.
Thus we can write forξ > 0:

θ1 = h y1
F = 0 y1

O = k − h (fuel-lean side,k > h)

θ1 = k y1
O = 0 y1

F = h− k (fuel-rich side,k < h).
(19)

Now, on using (4), (16) and (17), we obtain the governing equations forθ0, h and k,
valid at both sides of the reaction sheet†:

U
∂θ0

∂ξ
= ε 1θ0

U
∂h

∂ξ
= ε 1h+ ε lF1θ0 (20)

U
∂k

∂ξ
= ε 1k + ε lO1θ0.

Note that the terms associated with strain (the last terms in (4) and (16)) have dropped out
in the preceding equations: those are of orderβ−2, which follows from (18a). The jump
conditions resulting from integration of the quasi-planar reaction–diffusion equations are

[θ0] = [h] = [k] = 0[
∂h

∂ξ

]
= −lF

[
∂θ0

∂ξ

]
[
∂k

∂ξ

]
= −lO

[
∂θ0

∂ξ

]
(21)

ε

√
1+ f ′2

[
∂θ0

∂ξ

]
= −(1+ 1

2(µ− σ))1/2 exp(σ/2)

† The last two equations in (20) are, in fact, also valid through the reaction sheet
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to be satisfied atξ = 0. Here we use the notations

σ ≡ θ1
b = h(0+, y) µ = k(0+, y) (k > h)

σ ≡ θ1
b = k(0+, y) µ = h(0+, y) (k < h).

(22)

The bracket applied to any quantityψ denotes the difference between the values ofψ at
both sides of the reaction sheet, namely,[ψ ] ≡ ψ(ξ = 0+, y) − ψ(ξ = 0−, y). Also the
boundary conditions atξ = −∞ for θ0, h andk follow from (11), (13) and the definition
of h andk:

θ0 = 0 h = (−γF+ γθ )y k = (γO+ γθ )y as ξ →−∞. (23)

The boundary conditions at|y| → ∞ andξ finite are also given by equations (23). These
are exact solutions of equations (20) and (21), if we restrict our analysis to the only cases
that we consider, whereγθ − γF < 0 andγθ + γO > 0.

At this point the problem has been reformulated, in terms of the new dependent variables
θ0, h andk. A further simplification can be obtained since it is possible to obtainh andk
in terms of a single functiong(ξ, y) by the relations†

h = (γθ − γF)y + lF(g − θ0) k = (γθ + γO)y + lO(g − θ0) (24)

whereg is continuous and has continuous gradients at the reaction sheet and is governed
by

U
∂g

∂ξ
= ε 1g + U ∂θ

0

∂ξ
(25)

satisfying the boundary conditionsg→ 0 both atξ → −∞ and |y| → ∞ and∂g/∂ξ = 0
for ξ →∞.

The perturbation,σ , in the premixed flame temperature can be obtained from the
relations (24) and the value,gP , of g at ξ = 0. Behind the lean and rich branches of
the premixed flame front, there is also a thin diffusion-controlled reaction layer or diffusion
flame located whereh = k or g = gD, with gD being given by (24) forh = k andθ0 = 1.
More explicitly, if 1 is defined by

1 = 1(ξ, y) ≡ (γF+ γO)y + (lO− lF)(g − 1) (26)

then the thin diffusion-controlled reaction layer is given by1 = 0, a relation betweenξ and
y, and the fuel-lean region behind the triple flame is given by1 > 0. However, for brevity,
we shall use the expression fuel-lean side to refer to conditions at the reaction sheet,ξ = 0,
thus the domain ofy corresponding to1(0, y) > 0, or g = gP and1 > 0.

In summary, the limitβ →∞ and the assumption that the Lewis numbers are close to
unity allow us to replace the original conservation equations and associated boundary and
jump conditions to be verified byθ , yF andyO by similar expressions written in terms of
θ0, g.

Specifically, our task now is to solve the equations

U
∂θ0

∂ξ
= ε 1θ0

U
∂g

∂ξ
= ε 1g + U ∂θ0

∂ξ

(27)

† Indeed, substitution of the relationsh = (γθ − γF)y + lF(ĥ − θ0) and k = (γθ + γO)y + lO(k̂ − θ0), into the
governing equations forh andk and their boundary and jump conditions shows thatĥ and k̂ are governed by the
same equation and jump and boundary conditions. Thusĥ = k̂ = g, whereg is as indicated.
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which are valid at both sides of the reaction sheet (ξ < 0 and ξ > 0), subject to the
boundary conditionsθ0 = g = 0 at ξ = −∞ and at|y| = ∞, and∂θ0/∂ξ = ∂g/∂ξ = 0 at
ξ = ∞.

The jump conditions to be satisfied atξ = 0 are

[θ0] = [g] = 0[
∂g

∂ξ

]
= 0 (28)

ε

√
1+ f ′2

[
∂θ0

∂ξ

]
= −(1+ b)1/2exp(σ/2)

whereσ andb are given in terms ofgP , the value ofg at ξ = 0, by

σ = (γθ − γF) y + lF (gP − 1) (fuel-lean side)

σ = (γθ + γO) y + lO (gP − 1) (fuel-rich side)
(29)

and

b = 2γθ − γF+ γO

2
y + lF+ lO

2
(gP − 1)− σ. (30)

At this stage, a comment on the limitations of the reduced model just derived is in order.
Note that the derivation of this model, forβ → ∞ with ε ∼ 1, has involved two
approximations, namely a linearization of the boundary conditions (5) and a neglect of
the strain terms in the governing equations (4). Clearly, the reduced model is not applicable
far downstream, where a balance between transverse diffusion and strain is expected; the
same balance that characterizes the underlying one-dimensional diffusion flame. This will
occur for distances downstream, equal, in order of magnitude, to the flame-front velocity
multiplied by the diffusion time across the mixing layer, that is, in our non-dimensional
notation, for† ξ ∼ β2. This remark being made, the two approximations mentioned are
justified as long as distances which are small compared to the mixing layer thickness,
y/β � 1, need to be considered. This is so, as long as the preheat zone of the triple-flame
leading front,lh, remains small compared withL or, as we have seen in the last section,
ε � β1/2. Whenε takes values of orderβ1/2, the results of the reduced model are expected
to deviate from those of the original model. In particular, it is easily seen that no solution
with zero propagation velocity,U = 0, exists for the reduced model (unless frozen), due
to the absence of the strain terms in the governing equations. Thus, no negative values of
U can be obtained, in the frame of the reduced model, by a continuous increase ofε from
small to large values.

5. The limit casesε� 1

In the limit ε → 0, the flame, including its preheat zone, can be viewed as a surface of
discontinuity located atξ = 0. For ε � 1 the preheat zone upstream of the reaction sheet
is a thin layer of thickness of orderε. Outside this layer, diffusion and heat conduction can
be neglected in a first approximation. For small values ofε we shall describe the solution
in the form of expansions inε of the form f = f0 + ε f1, U = U0 + ε U1 and similar
expansions forθ andg written for the different regions.

† More precisely, forξ ∼ β2/ε.
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5.1. Outer solutions on both sides of the flame

For ξ < 0 andξ > 0 we seek outer expansions in the form

θ0 = 20+ ε21+ · · · g = G0+ εG1+ · · · (31)

which we substitute into equations (27). We then obtain in a first approximation
U0∂20/∂ξ = U0∂G0/∂ξ = 0. Thus20 andG0 are independent ofξ on both sides of
the flame, although20 has a jump across the flame. More precisely, when (14) and the
boundary conditions atξ = −∞ are used, one finds

θ0 = 20 =
{

0 for ξ < 0

1 for ξ > 0
(32)

and

g = G0 = 0 for ξ < 0. (33)

5.2. The structure of the flame

We now analyse the thin region aroundξ = 0 where diffusive effects should be retained.
To study this zone, we use the stretching transformationξ = εζ . We seek expansions in
the form

θ0 = θ0+ εθ1+ · · · g = g0+ εg1+ · · · . (34)

When using these expansions with the jump conditions at the reaction sheet we obtain

[θ0] = [g0] = 0 (35a)[
∂g0

∂ξ

]
= 0 (35b)

ε

√
1+ f ′02

[
∂θ0

∂ξ

]
= −(1+ b0)

1/2 exp(σ0/2) (35c)

and

[θ1] = [g1] = 0 (36a)[
∂g1

∂ξ

]
= 0 (36b)[

∂θ1

∂ζ

]
= (A− F)

[
∂θ0

∂ζ

]
(36c)

whereA andF are defined by

A ≡ σ1

2
+ b1

2(1+ b0)
F ≡ f ′0f

′
1

1+ f ′02 . (37)

In (35) and (36) we have introduced the expansionsσ = σ0+εσ1+· · · andb = b0+εb1+· · ·,
which are simply obtained from (29) once the expansiongP = gP0 + εgP1 + · · · is
determined.

Using (34) and the conservation equations (27) written in terms ofy and the inner
variableζ = ξ/ε yields to leading order

U0
∂θ0

∂ζ
− (1+ f ′02

)
∂2θ0

∂ζ 2
= 0 (38a)

U0
∂g0

∂ζ
− (1+ f ′02

)
∂2g0

∂ζ 2
= U0

∂θ0

∂ζ
. (38b)
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The general solution of (38a) is θ0 = A+ B exp(αζ ), where

α ≡ U0

1+ f ′02 (39)

andA andB are constants to be determined at both sides of the reaction sheet. Thus for
ζ > 0, we must haveθ0 = 1, which is the bounded solution that matches the anticipated
outer solution in the burnt gas (32) (second equation). Forζ < 0, the solution must be
θ0 = exp(αζ ) in order to satisfy the matching requirement with the upstream outer solution
(32) (first equation) and the continuity requirement [θ0] = 0 at ζ = 0. Thus we have

θ0 =
{

exp(αζ ) for ζ < 0

1 for ζ > 0.
(40)

Similarly, g0 will be independent ofζ for ζ > 0 so as to be bounded and given by

g0 = (1− αζ) exp(αζ ) for ζ 6 0 (41)

if we use the matching conditions with the upstream solution (33) and the jump condition
(35b). From the definitiongP ≡ g(0, y), it is seen thatgP0 = 1. Also, sinceg0 is continuous
at ζ = 0, it follows thatg0 = 1 in the burnt gas,ζ > 0.

The jump condition (35c) allows us to determine the local burning speed† S0 ≡
U0/(1 + f ′02

)1/2, a quantity that appears as the left-hand side of (35c) after using (39)
and (40). The right-hand side of (35c) is known, becauseσ0 andb0 are now available from
(29), (30) andgP0 = 1; namely,

σ0 = (−γF+ γθ ) y b0 = γF+ γO

2
y (fuel-lean side)

σ0 = (γO+ γθ ) y b0 = −γF+ γO

2
y (fuel-rich side).

Consequently, the local burning speed is given by

S0 = U0√
1+ f ′ 20

=
{

e−γ0 y (1+ γy)1/2 for y > 0 (fuel-lean)

eγ (1−0) y (1− γy)1/2 for y < 0 (fuel-rich)
(42)

where the new parameters0 andγ are defined by

0 ≡ γF− γθ
γF+ γO

γ ≡ γF+ γO

2
(43)

and can be expressed in terms ofηs andϒ given in (6) as

γ = 2 exp(−η2
s)√

π (1− erf(ηs)2)
and 0 = 1+ erf(ηs)

2
(1−ϒ). (44)

Equation (42), involving the eigenvalueU0, determines the flame shape,f0(y), in a first
approximation. For fixed values of0 and γ , equation (42) admits solutions for infinitely
many values ofU0; but only for a single value ofU0, the solution will not present a cusp
(i.e. a discontinuous slope) at its leading edge, as may be expected to be the case forfreely
propagatingtriple flames. This fixes the value ofU0, requiring that the derivativef ′0 be

† The local burning speedS is defined as the component of the fluid velocity ahead of the flame normal to the flame
surface,S = (Ui− 2(ε/β) (ηs+y/β)j)·n = U/(1+f ′(y)2)1/2+O(β−1), wheren = (i−f ′(y)j)/(1+f ′(y))1/2
is the unit vector normal to the flame pointing to the burnt gas.
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zero at the leading edge—a criterion which has been used by Dold [2]. We thus find that
the velocity of propagation of the triple flame only depends on0 and is given by

U0 =


e(0−1/2)

√
20

for 0< 0 6 1
2

e(−0+1/2)

√
2(1− 0) for 1

2 6 0 < 1.

(45)

This is also the maximum burning speed, obtained at the leading edge located (in a first
approximation) at

y∗ =


(1− 20)

2γ 0
0< 0 6 1

2

(1− 20)

2γ (1− 0)
1
2 6 0 < 1

(46)

It is easy to check that a leading edge exists only for values of0 strictly between 0
and 1. In view of (44), the condition 0< 0 < 1 is always fulfilled whenϒ = 0, that is,
whenever the fuel side and the oxidizer side have equal temperatures. In the general case,
the condition 0< 0 < 1, ensuring the existence of a leading edge, can be written in terms
of the parameterϒ , and can be shown to be equivalent to the statement that a leading edge
exists only if the temperature at the oxidizer side, and that at the fuel side, are less than the
Burke–Schumann temperature of the diffusion flame in the mixing layer†.

5.3. Second approximation for the solution

We have just determined the first approximation to the local burning speed, the triple-flame
propagation velocity and, by using (42), the flame shape. Our aim now is to obtain the next
approximation, that is the following terms in the expansions of these quantities in terms of
ε, and thus the influence of Lewis numbers on the propagation of the triple flame.

From (27) we obtain

U0
∂θ1

∂ζ
− (1+ f ′02

)
∂2θ1

∂ζ 2
= L(θ0)− U1

∂θ0

∂ζ
(47)

U0
∂g1

∂ζ
− (1+ f ′02

)
∂2g1

∂ζ 2
= L(g0)− U1

∂g0

∂ζ
+ U0

∂θ1

∂ζ
+ U1

∂θ0

∂ζ
(48)

whereL is given by

L ≡ 2f ′0f
′
1
∂2

∂ζ 2
− f ′′0

∂

∂ζ
− 2f ′0

∂2

∂y∂ζ
.

Downstream of the reaction sheet it is found thatθ1 is zero so as to be bounded and to
match (32) (second part). Similarly,g1 is found to be independent ofζ for ζ > 0. Thus

θ1 = 0 g1 = gP1 for ζ > 0 (49)

where the constantgP1 is as yet undetermined.

† It is important to point out that our conclusion about the existence of a leading edge is based on a linearization
about the stoichiometric line, and on the existence of a peak inS0(y). We shall not discuss here the non-generic
case—in which the temperature of one of the feed streams is hotter than the Burke–Schumann temperature—for
which S0(y) has no maximum.
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Integration of (47) fromζ = −∞ to ζ = 0− yields

(1+ f ′02
)

[
∂θ1

∂ζ

]
= Iθ − U1

U0g
P
1 = Ig

(50)

where we have introduced the notation

Iθ =
∫ 0

−∞
L(θ0) dζ and Ig =

∫ 0

−∞
L(g0) dζ. (51)

To obtain (50) we have used the continuity requirement (36a) to replace the values of
θ1 andg1 at ζ = 0− by those atζ = 0+. We have also used (36b), along with the fact that
the partial derivatives ofθ1 and g1 with respect toζ are zero atζ = −∞ on account of
(32) and (33), and atζ = 0+ on account of (49).

From (40) and (41), the integrals in (51) are found to be given by

Iθ = 2U0F − f ′′0 and Ig = −f ′′0 .
Then, with the aid of (36c) and use of (40), equations (50) reduce to

U0g
P
1 = −f ′′0

U0F − U1 = f ′′0 − U0A
(52)

involving gP1 , the perturbationU1 in front velocity and the functionsA and F of y
defined in (37). At this stage we have two equations for three unknowns. However, it
is possible to determine directly the perturbation in flame velocity,U1, if we use the system
of equations (52) at the leading edge of the flame,y∗, whereF = 0 becausef ′0(y

∗) = 0.
Thus we obtain

U1 = −
[

1+ lF
2
− (lF− lO)/4

1+ γy∗
]√

2γ0
(
0< 0 6 1

2

)
= −

[
1+ lO

2
− (lO− lF)/4

1+ γy∗
]√

2γ (1− 0) (
1
2 6 0 < 1

)
. (53)

With U1 thus determined, we can use again the system of equations (52) for values of
y different fromy∗ to calculategP1 andf ′1.

The results can be used in particular to calculate the next approximation to the normal
burning speed,S, and the temperature along the flame front,θFl ≡ θ(ξ = 0+, y).

For the former it is found that

S(y) = S0(y) (1− L̃ κ̃) (54)

where S0(y) is given by (42), κ̃ ≡ εS−1
0 f0

′′/
√

1+ f ′ 20 the flame curvature non-

dimensionalized with the local flame thickness,DT/S0(y), andL̃ a local Markstein length
defined by

L̃ = L̃(y) = 1+ lF
2
− (lF− lO)/4

1+ γ y at fuel-lean side

= 1+ lO
2
− (lO− lF)/4

1+ γ y at fuel-rich side.

For the flame temperature the following expansion is found:

θFl =


1− 2γ0

β
y − lF

βU0(0)
εf ′′0 (y) at fuel-lean side

1+ 2γ (1− 0)
β

y − lO

β U0(0)
εf ′′0 (y) at fuel-rich side.

(55)



Ignition and extinction fronts in strained mixing layers 463

The significance of (55) is clear: the first term on the right-hand side, equal to one, is
the flame temperature in the absence of gradients in the fresh mixture, that is the adiabatic
flame temperature of a planar stoichiometric flame. The second term, linear iny, describes
the deviation of flame temperature for an infinitely thin flame (ε = 0), resulting from the
linear deviation of mass fractions and of temperature in the fresh mixture from their values
at the stoichiometric location (see the boundary conditions (11)). The third term indicates
the combined effects of flame curvature and differential diffusion. It is zero for unity Lewis
numbers, positive for Lewis numbers less than one, and negative otherwise in agreement
with available knowledge on stretched premixed flames (see, for example, [9, 10]).

We close this section by specifying the location of the stoichiometric surface behind the
premixed flameξ > 0, or the position of the diffusion-flame tail of the triple flame,yst.
This is obtained, to first order inε, by setting1 = 0, g = gP0 + εgP1 andy = yst in (26).
Hence

yst = 0+ (lO− lF)
2γ U0(0)

εf ′′0 (0)+ · · · . (56)

Thus, the position of the stoichiometric surface behind the flame is shifted from the upstream
stoichiometric surface,y = 0, if the Lewis numbers of the fuel and oxidizer are different.
Sincef ′′ is positive, it is clear that the shift is towards the oxidizer side ifLeO > LeF.

6. Numerical study

In this section, we present the numerical results for triple-flame propagation corresponding
to values ofε extending over a wide range, up to the extinction values of the underlying
planar diffusion flame. The governing equations solved numerically and their boundary
conditions are given by equations (4), (5) and (7). Those are discretized using a finite-
volume method and solved with a multigrid method [11]. The computational domain extent
in the transverse (y-) direction is typically eight times the mixing layer thickness. The
extent in thex-direction is typically 100 times the planar laminar flame thickness. The grid
is a non-uniform rectangular grid with typically 100 000 points.

The main result of the study, in its general form, would be to provide the propagation
velocityU in terms ofε, LeF, LeO, ηs, ϒ , αh andβ. In this work, however, we shall only
describe the influence of two parameters, namelyε andLeF.

The other parameters will have fixed values, namelyLeO = 1, ηs = 0 (i.e. the upstream
stoichiometric surface is at the centre of the mixing layer),ϒ = 0 (i.e. a zero tranverse
temperature gradient),β = 8 andαh = 0.85.

The results of our analysis will be presented in terms ofε and lF ≡ β(LeF− 1). Since
the determination of the propagation velocityU is the main purpose of the work, we shall
begin by giving a synthesis in the form of a plot ofU versusε for different values of
lF. Then the influence of the (fuel-) Lewis number will be examined with more details as
follows. First, we shall compare three cases corresponding to a fixed value ofε, ε = 0.5,
but to different values oflF. Second, we shall describe for fixed values oflF, how triple
flames depend onε as this parameter is varied.

Since steadily propagating triple flames are not expected ifε exceeds the extinction value
εext of the planar diffusion flame, a plot of εext versuslF will be useful in the discussion
below. This plot, determined numerically by solving the underlying one-dimensional
problem independent ofx, is given in figure 2.
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Figure 2. The value ofε corresponding to the extinction of the planar diffusion flame,εext,
versuslF. The values of the other parameters, kept fixed in the present study, are:β = 8,
lO = 0, ηs = 0, ϒ = 0 andαh = 0.85.

6.1. Propagation velocity of the triple flame

Shown in figure 3 is a plot of the propagation eigenvalueU versusε for five values of
lF, namely,lF = −5, −3, 0, 5 and 10. For each value oflF, U has been normalized by
the correspondingplanar flame speed, obtained numerically. Common to all cases, is the
existence of a range ofε with negative flame speeds, as found in previous studies in unity
Lewis number situations under strain [2–4]. The upper limit of this range is, as could be
checked by using figure 2, the valueεext of the planar diffusion flame. For illustration
purposes, we have indicated the position ofεext with downward arrows on theε-axis for
lF = −5, 0 and 5.

Another important observation, is the change in the behaviour ofU versusε as lF is
varied. The curves decrease monotonically withε as long aslF is above a critical negative
value. WhenlF is sufficiently negative (i.e.LeF sufficiently below one), an important
overshoot in the value ofU above one is observed, as seen forlF = −5. The initial increase
of U and its overshoot above one in such (negativelF) cases are essentially attributed to the
rise in the flame temperature above one, and thus to the intensification of the reaction at the
premixed front of the triple flame. The physical mechanisms leading to this intensification
are the same as those, well known, encountered in studies of curved and stretched premixed
flames. Obviously, an increase in the local combustion rate does not necessarily lead to
higher values ofU , since, due to flame curvature and to strain, only a part of the heat
released is conducted towards the fresh mixture, in the direction of flame propagation. As
a matter of fact, as we shall see more quantitatively below, zero and even large negative
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Figure 3. Propagation velocity of the triple flame,U , versusε for five values oflF: lF = −5,
−3, 0, 5 and 10. For eachlF, U has been normalized by the correspondingplanar flame
speed, obtained numerically. The values ofε, εext, corresponding to the extinction of the planar
diffusion flame (given in figure 2) are indicated by downwards arrows on theε-axis for lF = −5,
0 and 5. (Values of other parameters:β = 8, lO = 0, ηs = 0, ϒ = 0, αh = 0.85.)

values ofU can be obtained in cases where the reaction rate is well above its corresponding
level in a planar configuration.

6.2. A comparative case for fixedε

A comparison of three cases corresponding tolF = −5, 0 and 5, respectively, but to the same
value ofε (ε = 0.5) is carried out in figure 4(a). For each of the three values oflF under
consideration, ten isocontours of the combustion rate,ω, are shown. The isocontours are
equidistributed between zero and the corresponding maximum value,ωmax, also indicated
in the figure. It is seen that the quasiplanar character of the leading premixed front is
progressively lost as the Lewis number is increased. Since the premixed flame is concave
towards the burnt gas side, this is due to the decrease of its normal speed for increasing
values oflF. Also to be noted is the shift of the leading edge and of the trailing diffusion
flame from the upstream stoichiometric surface,y = 0. In addition to this shift (towards the
oxidizer side iflO > lF and to the fuel side otherwise), one would expect a more important
shift in the position of the leading edge in the presence of tranverse temperature gradients
ϒ 6= 0, which is not included in the present numerical study.

To complement these simple observations we have plotted, in figures 4(b) and (c), 2(x)
andR(x), respectively, defined as follows.2(x) is the maximum ofθ(x, y) at the location
x asy varies andR(x) = ∫∞−∞ ω(x, y)dy, that is the burning rate per unit surface parallel to
the mixing layer. These two variables provide an overall and simplified description of the
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Figure 4. (a) Comparison forε = 0.5 between three cases corresponding from top to bottom to
lF = −5, 0 and 5, respectively. Each subfigure represents ten isocontours of the combustion rate,
ω, equidistributed between zero and the corresponding maximum valueωmax (also indicated).
(b) Variation of the peak temperature,2(x), along the mixing layer for the three cases of
figure 4(a), corresponding tolF = −5 (full curve with stars),lF = 0 (full curve) andlF = 5
(full curve with squares).2(x) is defined as the maximum ofθ(x, y) for the fixed locationx as
y varies. (c) Combustion rate per unit surface parallel to the mixing layer,R(x), for the three
cases of (a), corresponding tolF = −5 (full curve with stars),lF = 0 (full curve) andlF = 5
(full curve with squares).R(x) is defined byR(x) = ∫∞−∞ ω(x, y)dy.
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Figure 4. Continued.

combustion process in the combustible near-stoichiometric layer which, forβ � 1, appears
as a surface when viewed on a length scale of the order of, or larger than, the mixing
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Figure 5. (a) Comparison forlF = 0 between three cases corresponding from top to bottom
to ε = 0.2, 1.75 and 2.6, respectively. Each subfigure represents seven isocontours of the
combustion rate,ω, equidistributed between zero and the corresponding maximum valueωmax

(also indicated). The corresponding propagation velocities (which can be extracted from figure 3)
are equal to 0.83, 0.02 and−1.05, respectively. (b) Peak temperature,2(x), and peak
combustion rate�(x) versusx, corresponding frame by frame to the subfigures of (a). The
definition of�(x) is similar to that of2(x). (c) Peak temperature,2(x), and combustion rate
per unit surface parallel to the mixing layer,R(x) versusx, corresponding frame by frame to
the subfigures of (a). The definition of2(x) andR(x) is as in figure 4.
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Figure 5. Continued.

layer thickness†. We simply note in figure 4(b) the differences in the slopes of2(x) at the
downstream side of the premixed front, depending onlF, varying from a positive value to a
negative one aslF is increased. No further comments will be made here in connection with
figures 4(b) and (c), since similar comments, depending on the value ofε, will be given in
the next subsection.

6.3. Dependence onε for a given Lewis number

In this section we study the dependence onε, for three fixed values oflF. We begin with
the results relative tolF = 0, given in figures 5(a)–(c).

† Such variables can be useful in simplified one-dimensional models as in [12].
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Figure 5. Continued.

Shown in figure 5(a) are three subfigures corresponding, from top to bottom, toε = 0.2,
1.75 and 2.6, respectively. The values ofε are chosen such that the leading front is
moderately curved, its propagation velocity is close to zero, or that it is retreating in
conditions close to the extinction of the diffusion flame,ε ≈ εext, from top to bottom,
respectively. Each subfigure represents seven isocontours of the combustion rate,ω,
equidistributed between zero and the corresponding maximum valueωmax, also indicated.
The propagation velocities corresponding to these three cases, which can be extracted from
figure 3, are indicated in the captions. The triple-flame shapes observed asε is varied are
familiar from previous studies. Note that the maximum value ofω, ωmax, remains constant,
as can also be seen in figure 5(b), where2(x) (introduced above) and�(x) are plotted.
Here�(x) is defined as the maximum ofω(x, y) asy varies. The temperature at the hot
side decreases from one, its expected maximum value forε → 0, asε is increased. This
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Figure 6. (a) Comparison forlF = 5 between three cases corresponding from top to bottom to
ε = 0.2, 1 and 1.6, respectively. Each figure represents seven isocontours of the combustion
rate,ω, equidistributed between zero and the corresponding maximum valueωmax (indicated).
The corresponding propagation velocities are equal to 0.70, 0.03 and−0.72, respectively. (b)
Peak temperature,2(x), and peak combustion rate�(x) versusx, corresponding frame by
frame to the subfigures of (a).
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Figure 6. Continued.

decrease is not inconsistent† with the constancy inωmax mentioned except whenθ falls by a
critical amount, of orderβ−1, below unity. In that case the reaction is quenched everywhere
and both the temperature and the combustion rate fall towards their frozen values. This will
happen ifε is increased aboveεext. Finally, figure 5(c) is similar to figure 5(b), except that
the global rateR(x) defined above is used instead ofω(x).

Differential-diffusion effects could be appreciated by comparing the case just presented,
corresponding tolF = 0, with two cases represented in figures 6 and 7, and corresponding

† Indeed forLeF = LeO = 1, yO + θ and yF + θ are conserved scalars which are easily determined. More
precisely,yO + θ = 1+ erf(y/β) and yF + θ = 1− erf(y/β), for ϒ = 0. Then,ηs being taken equal to zero,
one obtainsat the symmetry axis, y = 0, the relationsyO = 1− θ and yF = 1− θ , so that,w(x, y = 0) is a
function of θ alone. Consequently, the spatial maximum ofω is equal to the maximum of the functionω(θ),
which corresponds to a given fixed value,θ∗, independent of the problem. This is so unlessθ falls everywhere
below θ∗.
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Figure 7. (a) Comparison forlF = −5 between three cases corresponding from top to bottom to
ε = 0.3, 6.5 and 9, respectively. Each subfigure represents seven isocontours of the combustion
rate,ω, equidistributed between zero and the corresponding maximum valueωmax (indicated).
The corresponding propagation velocities are equal to 1.54, 0.20 and−3.04, respectively. (b)
Peak temperature,2(x), and peak combustion rate�(x) versusx, corresponding frame by
frame to the cases of (a).

to lF = 5 and lF = −5, respectively. The choice of the values ofε, and the notations,
demonstrated in the captions, are similar to those introduced above and need not be repeated.
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Figure 7. Continued.

It can be noted that, irrespective oflF, the evolution of the shape of the triple flames
as their propagation velocities decrease is roughly the same, despite their shift towards the
fuel side forlF > 0 and to the oxidizer side forlF < 0. However, important differences are
observed with respect to the profiles in flame temperature behind the premixed front, which
depend onε. For example, as seen in figure 6(b) for lF = 5, the flame temperature tends
by decreasing values to its asymptotic value, corresponding to the planar diffusion flame,
as x → ∞, when ε is small; for largerε, it increases towards its asymptotic value. The
opposite trend is observed in figure 7(b), for lF = −5. These observations are explained as
follows.

In the limit ε → 0, the leading premixed front tends to be locally planar, and its
burning temperature at the stoichiometric location tends to one irrespective of the value of
the Lewis number. In contrast, in the same limit, the diffusion flame far downstream, which
corresponds to the Burke–Schumann one-dimensional planar diffusion flame, has a burning
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temperature and position both depending on the Lewis number. To be more explicit, the
position of the Burke–Schumann diffusion flame, sayyf , and its burning temperature, say
θf , can be expressed in our notation by

θf = 1− lF

4β
and yf = −

√
π

8
lF (57)

if β � 1 and, as in the numerical study,ηs = 0, ϒ = 0 andLeO = 1 are adopted†. This
difference in the burning temperature at the leading front and at the diffusion tail explains
the influence oflF on the slope ofθmax for ξ > 0, whenε is small. Asε is increased, the
temperature of the diffusion tail decreases withε (see figures 5(b), 6(b) and 7(b)), while
that of the leading front can increase due to flame curvature iflF < 0 (figure 7(b)). It is
interesting to note that even negative values ofU are obtained, forε close toεext, with flame
temperatures and combustion rates well above their values in the planar case (figure 7(b)).

7. Quick reference to main results

This section provides a quick reference to the main results, and could be read directly
after section 2, where the scaling which leads to the governing equations (4), (5) and (7)
is detailed. In particular, we recall that the reference length and speed have been taken
as Lref = L/β andUref = S0

L, whereL = √2DT/a is the mixing layer thickness, and
β andS0

L are the Zeldovich number and the planar laminar flame speed corresponding to
the stoichiometric conditions in the frozen mixture. Of particular importance to the present
discussion are the non-dimensional parametersε, ηs and ϒ . The first one, defined by
ε = l0F/Lref, represents the (planar) flame thicknessl0F = DT/S

0
L relative to the reference

length, thus small values ofε correspond to thin flames or large Damköhler numbers. The
second and third, defined by (6), represent the non-dimensional location of the upstream
stoichiometric surface‡ and the non-dimensional difference in the feed temperatures of the
fuel and oxidizer streams, respectively. Actually, the parametersηs andϒ appear in the
analytical results in the form of two simple combinations, given in (44), namely

γ = 2 exp(−η2
s)√

π (1 − erf(ηs)
2)

and 0 = 1+ erf(ηs)

2
(1−ϒ).

For ε � 1, the results are expressed as expansions in terms ofε. In particular, the
propagation velocity (the main quantity to be determined) is written asU = U0+ εU1.

To leading order,U is found to depend on the single parameter0, U0 = U0(0). This
dependence is given by (45), a simple expression which shows thatU0 is larger than or

† Equations (57) can be obtained as follows. The governing equations for the underlying one-dimensional
diffusion flame are given by (4) in which derivatives with respect tox are discarded. The corresponding
boundary conditions for|y| → ∞ are obtained from (5). ForLeO = 1 and ϒ = 0, they are given by
θ = yO = yF − 2(1− erf(ηsLe

1/2
F ))−1 = 0 at y = −∞, andθ = yF = yO − 2(1+ erf(ηs))

−1 = 0 at y = ∞.
Then, the conserved scalaryO+ θ is found to be equal to(1+ erf(ηs+ y/β))(1+ erf(ηs))

−1, and hence the flame
temperatureθf is given, in the limit of infinitely fast chemistry, byθf = (1+ erf(ηs + yf/β))(1+ erf(ηs))

−1,
where yf is the position of the reaction sheet, separating the oxygen from the fuel. To determineyf , yO

and yF are found at both sides of the reaction sheet by solving chemistry-free equations and using the
boundary conditions at|y| = ∞, just given, along withyF(yf) = yO(yf) = 0. Then, the jump condition
(dyF/dy)(y

−
f ) = −LeF (dyO/dy)(y

+
f ) yields the relation(1+erf(ηs))

−1(1−erf(ηs+yf/β))
−1 exp(−(ηs+yf/β)

2) =
Le
−1/2
F (1− erf(ηsLe

1/2
F ))−1(1+ erf((ηs+ yf/β)Le

1/2
F ))−1 exp(−(ηs+ yf/β)

2LeF). This relation, along with the
one expressingθf is terms ofyf given above, determine, in an implicit form, the position and temperature of the
flame. In the particular caseηs = 0, these relations simplify, forβ � 1 and lF = β(LeF − 1) = O(1), to the
explicit form (57).
‡ See the footnote to equation (6).
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equal to one (i.e. the stoichiometric planar flame value), accounting in particular for unequal
feed temperatures. Also there is a shift in the location of the leading edge of the flame
away from the upstream stoichiometric surface, given to leading order byy∗ determined in
(46).

To compute the next approximation,U1 can be evaluated from (53) where it is seen to
depend on0, γ , and on the reduced Lewis numberslF = β(LeF−1) andlO = β(LeO−1).

Similarly, the local normal flame speed to leading order,S0(y), is given by (42), which
also determines the flame shape in a first approximation,f ′0. Then, two terms expansions
are available for the normal speed,S(y), and for the flame temperature,θFl(y), from (54)
and (55).

For illustration, consider the case corresponding toηs = ϒ = 0 (i.e. the frozen
stoichiometric surface is at the centre of the mixing layer and the feed temperatures are
equal). Then0 = 1

2, γ = 2/
√
π , y∗ = 0 (from equation (46)) and the propagation speed

calculated from (45) and (53) is given by

U = 1− (1+ 1
4(lF+ lO)

)√ 2

π
ε.

Finally, a synthetic presentation of the numerical results describing the propagation
velocity of the triple flame for values ofε which are not necessarily small is given in figure 3
for different values of the fuel Lewis number and a fixed set of the other parameters (see
captions).

8. Conclusion

In this study, triple-flame propagation in a strained reactive mixing layer with possibly
unequal feed temperatures and non-unity Lewis numbers has been considered. The problem
has been formulated within the framework of a constant-density model and an overall
Arrhenius reaction. In the formulation, an important non-dimensional parameter isε, the
ratio of the thickness of the planar stoichiometric flame to the characteristic size of the
flame-front region. Numerical results describing, for different fixed values of the fuel Lewis
number and growing values ofε, the variation of the propagation velocity from positive
to negative and of the front from ignition front to extinction front of the strained diffusion
flame have been presented.

Special attention has been devoted to the distinguished limitβ → ∞ with ε ∼ 1. In
this limit, a simplified formulation has been derived, and solved analytically forε � 1.
In particular, simple expressions determining the propagation speed of the triple flame, the
local burning rate and the flame shape have been obtained.
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