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We describe two-dimensional steady propagating flame fronts in the stagnation mixing layer between two
opposed streams of the same reactive mixture, the propagation taking place in the direction perpendicular to
the plane of strain. The front, which is curved by the nonuniform flow field, separates a chemically frozen region
from a region with a twin-flame configuration. The front velocity is calculated in terms of the Lewis number,
LeF, and the Damköhler number, Da. Da, equal to the inverse of the Karlovitz number, is defined as the ratio
of the strain time to the transit time through the planar unstrained flame. For the cases corresponding to large
Da, difficult to tackle numerically, analytical expressions are given, characterizing the flame shape, and the
variation of the burning rate along the flame front from the nose up to the planar trailing branches. For
moderately large and low values of Da, the study is carried out numerically, yielding, in particular, the
propagation velocity in terms of Da, for different values of LeF. Different combustion regimes are thus
described including flames propagating toward the unburnt mixture, or ignition fronts, standing flames and
retreating flames, or extinction fronts. We also describe stationary cylindrical flames of finite-extent, or 2D
burning spots. In particular, a critical Lewis number is found, below which negative propagation speeds do not
exist while the 2D burning spots mentioned may be encountered. Typically, these exist only for sufficiently small
LeF if the Da is within a range [Damin, Damax], depending on LeF. For Da , Damin, the 2D spots are
quenched, whereas as Da is increased, they grow in size, tending to give birth to propagating (ignition) fronts;
Damax is indeed found to be the smallest Da allowing for ignition fronts. We notice that the range of existence
of the 2D spots, for a given LeF, can overlap with that of retreating (extinction) fronts, and possibly with that
of 3D spots, or flame balls, in this flow. However, the 3D case is not addressed in this work. © 1999 by The
Combustion Institute

INTRODUCTION

In most combustion applications, the phenom-
ena of ignition, extinction, and flame propaga-
tion are interlinked and occur in highly com-
plex, generally turbulent flows. One important
illustrative instance, frequently encountered in
practice, is the process of flame initiation by a
localized deposit of energy, as for example by a
spark in gasoline engines, for which the three
phenomena would play an important part in the
success of ignition or its failure. Although the
analysis of such combustion events is a formi-
dable task in real flow situations, or even in
general laminar flows, it is instructive toward
their understanding, to examine these events in
simple prototypical flows.

As an illustration of this approach, we shall
analyze in this paper a type of flame front

structure that may be encountered when in a
two-dimensional flow configuration consisting
of the same reactive mixture as sketched in Fig.
1A, ignition is brought about by a hot spot near
the stagnation line. If in this flow configuration
the velocity components are given by vY 5 2aY
and vZ 5 aZ in the absence of chemical
reaction, where a is the strain rate, the gener-
ated flame will propagate rapidly in the Z-
direction, aided by the flow, while its propaga-
tion in the Y-direction will be slowed by the
opposing flow, thus leading to standing planar
fronts. However flame propagation in the neg-
ative and positive X-direction will be neither
aided nor opposed by the flow. As a conse-
quence, the flame will extend along the X-axis in
the form of two propagating fronts, curved in
the Y-direction, which will be soon nearly
aligned with the Z-axis and independent of the
Z-coordinate, for finite Z.

The present analysis will address the propa-
gation of such fronts along the X-direction, for
an Arrhenius reaction and using, for simplicity,
the thermodiffusive approximation of constant
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density. If the cold boundary difficulty is reme-
died, say by the introduction of an ignition
temperature, then similarity solutions for the
temperature and composition fields are known
to exist in the present flow configuration, depen-
dent only on Y. Two such stable solutions,
corresponding respectively to a frozen and a
strongly burning mode, are generally found, if
the activation energy is large enough, and the
strain rate below an extinction value. In this
paper, we shall describe the steady flame front
that propagates in the negative X-direction with
traveling wave solutions independent of the
Z-coordinate which converts one of these
modes into the other. If the frame of reference
is attached to the flame front, then the solutions
are also independent of time, and the velocity
field is given by vW 5 (U, 2aY, aZ), where the
additional component, U, is an eigenvalue rep-
resenting the propagation speed. The flames

under consideration will correspond to ignition
fronts extending combustion to near-frozen re-
gions, if U . 0, and to extinction fronts other-
wise. The effects of density changes due to gas
expansion on the front velocity and its structure
are not addressed in this paper, neither is the
stability of the flame propagation process.

In addition to the study of these fronts, we
shall discuss, also within the framework of the
thermodiffusion model, another combustion
mode corresponding to two-dimensional finite-
extent burning solutions, in conditions where
the strain rate is close to or higher than the
extinction value of the planar twin flame.

The paper is organized as follows. The next
section is dedicated to a formulation of the
problem, followed by presentation of the re-
sults, in terms of a Damköhler number, Da, and
a Lewis number. An analytical description is
given first, for the cases corresponding to large
values of Da, difficult numerically, completed
by a numerical description covering a wide
range of Da and different values of the Lewis
number.

MODEL AND FORMULATION

The analysis examines the propagation of two-
dimensional combustion fronts, between two
opposed streams of the same reactive mixture,
along the direction X perpendicular to the plane
of strain, as sketched in Fig. 1. For simplicity,
the density and transport properties are as-
sumed constant, and the combustion is repre-
sented by an irreversible reaction of the form

F3 P 1 q,

where F denotes the fuel, P the products, and q
the heat released per unit mass of fuel. The
combustion rate, v, defined as the mass of fuel
consumed by unit volume and unit time is
assumed to follow an Arrhenius law of the form

v 5 BrYFe2E/RT,

where B, r, YF, T, E, and R represent respec-
tively the preexponential factor, the density, the
mass fraction of fuel, the temperature, the
activation energy, and the universal gas con-
stant.

As already noted, for the existence of the

Fig. 1. (A) Opposed streams of the same reactive mixture,
with temperature Tu and a fuel mass fraction Yu. The flow
is two-dimensional, with velocity components vY 5 2aY
and vZ 5 aZ on the Y-axis and Z-axis, respectively. (B) A
two-dimensional front (independent of Z), propagating
along the X direction. The trailing planar branches corre-
spond to the strongly burning twin-flame solution (indepen-
dent of X and Z). The horizontal arrow represents the
X-component of velocity in a frame attached to the flame
front, and e is the typical thickness of the flame, relative to
the convective–diffusive length.
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steadily propagating flame fronts under consid-
eration, the activation energy of the reaction
must be large enough so that two steady stable
combustion modes independent of X are ob-
tained for strain rates below an extinction value.
The front joins these two modes, corresponding
to a frozen and a strongly burning solution of
the planar twin flame, respectively.

The conservation equations are

U
­YF

­X
5 DFDYF 2

v

r
1 aY

­YF

­Y
(1)

U
­T
­X

5 DTDT 1
q
cp

v

r
1 aY

­T
­Y

,

where DF and DT denote the diffusion coeffi-
cients of the fuel and of heat, and cp the heat
capacity.

For a nondimensional description, we shall
use the normalized quantities

yF 5
YF

Yu
and u 5

T 2 Tu

qYu/cp
,

and select as reference velocity the laminar
burning speed of a planar flame,1 SL

0 , and as
unit length the convection–diffusion length L 5
=2DT/a. Hence, the governing equations take
the form

U
­ yF

­ x
5

e

LeF
DyF 2 e21ṽ 1 2ey

­ yF

­ y
(2)

U
­u

­ x
5 eDu 1 e21ṽ 1 2ey

­u

­ y
,

where LeF 5 DT/DF is the Lewis number, and
e represents the ratio of the premixed flame
thickness, lFl

0 5 DT/SL
0 , to the reference length

L, and can be used to define a relevant2

Damköhler number, Da, by

e ;
lFl
0

L
5

lFl
0

Î2DT/a
, Da ; e22 (3)

The boundary conditions adopted are

yF 2 1 5 u 5 0 for x3 2` or uyu3 `, (4)

corresponding to the frozen solution, and

­ yF

­ x
5

­u

­ x
5 0 for x3 `, (5)

since, downstream, the profiles tend to the
strongly burning solution of the planar twin
flame, independent of x.

The nondimensional reaction rate, ṽ, is given
by

ṽ 5
b2

2
yF exp S b~u 2 1!

1 1 a~u 2 1!D , (6)

where a [ (Tad 2 Tu)/Tad is a heat-release
parameter, and b 5 E(Tad 2 Tu)/RTad

2 the
Zeldovich number; here Tad 5 Tu 1 qYu/cp is
the adiabatic flame temperature. The main ob-
ject of the analysis is the determination of the
propagation velocity U of the flame fronts,
along with the range of existence of the finite-
extent, two-dimensional steady burning spots
mentioned in the introduction. The results will
be presented in terms of e 5 Da21/ 2 and lF 5
b(LeF 2 1). In the numerical study, the param-
eters b and a will have fixed values, namely b 5
8 and a 5 0.85.

SOLUTION FOR LARGE DAMKÖHLER
NUMBERS

In this section, we briefly discuss the large
Damköhler number cases, which are difficult to
obtain numerically, since the flame is then thin
and extends over a large domain,3 y ; e21. In
the limit e 3 0, the flame can be viewed as an
infinitely thin surface with typical width of order
e on the scale L, and with a normal velocity
relative to the fresh mixture S( y). For those
cases, an analytical description can be obtained,
yielding in particular the propagation eigen-
value, U, the normal flame speed, S( y), and the
local flame temperature, uFl, by the expressions

1We shall take SL
0 5 =2b22DTB exp (2E/RTad), which is

the first approximation for b .. 1 of the burning speed of a
planar flame with unity Lewis number.
2Da thus defined is the ratio of the mechanical time, 2a21,
by the flame time lFl

0 2/DT. Its inverse, e2, represents a
nondimensional strain or a Karlovitz number.

3For e 3 0, the y-locations of the trailing branches of the
flame, corresponding to the planar twin-flame, are deter-
mined by the requirement that the y-component of velocity
is equal to SL

0 there, which leads, in nondimensional form, to
y ; e21.
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U 5 1 2 4S1 1
lF

2 De2

S~ y! 5 1 2 S1 1
lF

2 D 4e2

1 1 ~2ey!2 (7)

uFl 5 1 2
lF

b

4e2

1 1 ~2ey!2

A simple way to justify these expressions is to
use already established results on stretched
flames, instead of repeating lengthy derivations.
To this end, we first introduce some notations.
Let x̃ 5 ex and ỹ 5 ey be rescaled variables and
let the flame surface be described by x̃ 5 f( ỹ) so
that its unit normal vector pointing to the burnt
gas is defined by

nW 5
ıW 2 f9~ ỹ! jW

Î1 1 f9~ ỹ!2 ,

and the local burning speed, S, is given by

S 5 ~UWi 2 2ỹWj! z nW 5
U 1 2ỹf9~ ỹ!

~1 1 f9~ ỹ!2!1/ 2 (8)

Anticipating that the deviation of the normal
flame speed from 1 (the unstretched planar
value) is small, for Da .. 1, a first approxima-
tion for U and f9, say U0 and f90, can be obtained
upon replacing S by 1 in the preceding equation,

1 5
U0 1 2ỹf90~ ỹ!

~1 1 f90~ ỹ!2!1/ 2 (9)

Since the freely propagating flame is expected
to be smooth, and symmetrical relative to the
x-axis, it follows that f90(0) 5 0, which, on using
Eq. 9, leads to4

U0 5 1 and f90~ ỹ! 5
4ỹ

1 2 4ỹ2 , (10)

showing, in particular, that the trailing branches
of the flame are located at uỹu 5 ueyu 5 1

2. For an
improved description, we shall use, with our
notations, the following established results
[1–3],

S 5 1 2 S1 1
lF

2 Dk and uFl 5 1 2
lF

b
k, (11)

valid for small values of k, the flame stretch
nondimensionalized by the flame time lFl

0 /SL
0 ,

given by [4]

k 5 2nW z ¹ 3 ~vW 3 nW ! 1 ~vWflame z nW !~¹ z nW !
(12)

Here vWflame denotes the velocity of the flame
and vW the velocity of the fluid immediately
ahead of it, which in our frame of reference are
given by vWflame 5 0W and vW 5 UıW 2 2ỹWj 1 2z̃kW ; ¹
5 e2(­/­ x̃, ­/­ ỹ, ­/­ z̃) is the gradient operator
nondimensionalized by lF

0 . When these expres-
sions are substituted into Eq. 12, and use is
made of Eq. 10 to approximate U and f9, the
following expression for k is found:

k 5 F f 00
~1 1 f90

2!3/ 2 1
2f90

2

1 1 f90
2Ge2, (13)

or

k 5
4e2

1 1 4ỹ2 5
4e2

1 1 4e2y2 (14)

Note that the first term in Eq. 13 is the flame
curvature which, as it should, tends to zero as
the locations of the trailing planar wings are
approached, ỹ 3 61

2; the second term tends to
zero at the leading edge, ỹ 5 0, and to 2 as ỹ 3
61

2, where the only contribution to flame stretch

4Note that f90 5 0, corresponding to a planar flame propa-
gating in the x-direction is a kinematically possible solution,
which is rejected for being unstable in the present flow.

Fig. 2. The value of e, eext, corresponding to the extinction
of the planar twin flame, versus lF. The values of the other
parameters, kept fixed in the present study, are b 5 8 and a
5 0.85.
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is due to strain. Finally, when Eq. 14 is used in
Eqs. 11, the expressions advanced in Eqs. 7 are
obtained, with their significance being clear.

NUMERICAL STUDY

In this section a synthesis of the numerical
results is given, which mainly describe flame
propagation along the x-direction, and corre-
spond to the governing equations (2) and the
boundary conditions (4) and (5). The solutions
are obtained iteratively by solving with a multi-
grid method [5], the steady form of the equa-
tions discretized using a finite-volume ap-
proach. The flame front velocity U is updated so
that the temperature keeps a prescribed value at
the origin, which fixes the flame front at x 5 0.
The computational domain extent in the trans-

verse y-direction is typically 10 times the con-
vective–diffusive length, L 5 =2DT/a; its ex-
tent in the x-direction is typically 100 times the
planar laminar flame thickness, lFl

0 . A nonuni-
form rectangular grid with typically 100 thou-
sand points is used.

We shall begin by describing, for fixed values
of lF, the dependence of combustion fronts on e
5 Da21/ 2. Then, the essential results will be
summarized in a plot of the propagation eigen-
value U vs. e for different values of lF, followed
by a discussion of the regimes observed. We
shall see that these include propagating, still,
and retreating fronts, but also nonpropagating
finite-extent, two-dimensional steady structures,
for a certain range of the parameters.

As a preliminary step, useful in the discussion
below, we have plotted in Fig. 2 the extinction

Fig. 3. (a) Comparison for lF 5 0 between three cases corresponding from top to bottom to e 5 0.2, 0.45, and 0.55,
respectively. Plotted in each subfigure are three isocontours of the combustion rate, v, corresponding to v 5 0.7vmax, v 5
0.4vmax, and v 5 0.1vmax, where vmax is the maximum of v (also indicated). As e is increased, the front evolves from an
ignition front to an extinction front (retreating front), with propagation velocities (which can be extracted from Fig. 6) equal
to 0.80, 20.08, and 21.06, respectively. Of course, the plots extend to negative y by symmetry with respect to y 5 0. (b)
Temperature, mass fraction, and combustion rate profiles at centerline, y 5 0, vs. the longitudinal coordinate x. The
subfigures correspond frame per frame to those of Fig. 3a. Note that the combustion rate has been normalized by its maximum
value over the whole domain, vmax.
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value of the planar twin-flame, eext, against lF. This
plot is obtained numerically by solving the under-
lying one-dimensional problem x-independent.5

Dependence on the Damköhler Number

In this section we study the dependence on e,
for three fixed values of lF. We begin with the
case lF 5 0, for which three subfigures corre-
sponding from top to bottom to e 5 0.2, e 5

0.45, and e 5 0.55, are shown in Fig. 3a. The
values of e are chosen such that the propagation
velocity is that of a moderately curved front
(positive), close to zero, or significantly negative
(corresponding to e ' eext), from top to bot-
tom, respectively. Each subfigure represents iso-
contours of the combustion rate, v, as described
in the captions where the propagation velocities
are also given. The temperature, mass fraction,
and combustion rate profiles at the centerline,
y 5 0, corresponding frame by frame to Fig. 3a,
are plotted vs. the longitudinal coordinate x, in
Fig. 3b. Note that as e is increased, the reaction
persists behind the leading front, resembling
thus the situation behind the edge of a triple
flame.

The influence of the Lewis number can be
appreciated by comparing the case just pre-
sented, corresponding to lF 5 0, with two cases
represented in Figs. 4 and Figs. 5 and corre-
sponding to lF 5 3 and lF 5 23, respectively.

5Results describing the (one-dimensional) twin flame can be
found e.g. in [6], [3] (page 41), and [10] (page 332). In
particular, as stressed in the numerical study in [6], and
suggested by the analytical treatment in [3] or [10], extinc-
tion typically occurs by quenching (incomplete reaction) at
the symmetry surface, y 5 0, except for LeF sufficiently
above 1. In this latter case, the flame extinguishes while the
reaction zones are away from the symmetry surface and
reaction is complete. More precisely, in our notations and in
the limit b 3 `, these two modes of extinction occur for lF

, 4 and lF . 4, respectively, with eext given by eext 5 p1/ 2

exp (2lF/4)/ 2, for lF , 4.

Fig. 4. (a) Comparison for lF 5 3 between three cases corresponding from top to bottom to e 5 0.2, 0.28, and 0.35,
respectively. Plotted in each subfigure are three isocontours of the combustion rate, v, characterized as in Fig. 3a. The
propagation velocities from top to bottom are equal to 0.60, 0.07, and 20.7, respectively. (b) Temperature, mass fraction, and
combustion rate profiles at centerline, y 5 0, vs. the longitudinal coordinate x. The subfigures correspond frame per frame
to those of Fig. 4a.
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The choice of the values of e, and the notations,
explicated in the captions, are similar to those
introduced above. For lF . 0 the minimum
flame temperature occurs at the leading edge,
where curvature is highest, in agreement with
the asymptotic results for small e. This explains
the positive slope of the temperature profile
behind the edge observed in Fig. 4b. The occur-
rence of the maximum flame temperature at the
leading front, for lF , 0, and the negative slope
of the temperature profile behind the edge in
Fig. 5b, are understood in the same fashion.

It is interesting to note that negative propa-
gation speeds have been obtained for the three
values of the Lewis number considered. Never-
theless, this is not always so, as we shall now see.

Combustion Regimes

Shown in Fig. 6 is a plot of the propagation
eigenvalue U vs. e for five values of lF, namely,

lF 5 25, 24, 23, 0, and 3. For each value, U
has been normalized by the corresponding pla-
nar unstretched flame speed, obtained numeri-
cally. The calculated speeds are represented by
small circles and have been restricted to e $ 0.2
to ensure sufficient numerical resolution. Also,
for e , 0.2, solid curves starting from the point
(e 5 0, U 5 1) and corresponding to the
asymptotic expression (7.a) are plotted for the
five values of lF given above.6

As a first observation relative to the numeri-

6Although the values of e considered in the numerics are not
very small compared to 1, it is seen that the agreement
between the tendencies of the numerical and asymptotic
curves is good for lF 5 3 and lF 5 0, and much less
satisfactory for lF 5 24 and 25. In these latter cases, the
bad disagreement is due, at least partly, to the significant
overshoot of the flame temperature above 1, which limits
the validity of the linearized expressions (Eqs. 7). A more
fundamental issue when the Lewis number is sufficiently
small is the expected cellular instability of the front as it

Fig. 5. (a) Comparison for lF 5 23 between three cases corresponding from top to bottom to e 5 0.2, 1, and 1.16,
respectively. Plotted in each subfigure are three isocontours of the combustion rate, v, characterized as in Fig. 3a. The
propagation velocities from top to bottom are equal to 1.19, 0.02, and 21.15, respectively. (b) Temperature, mass fraction,
and combustion rate profiles at centerline, y 5 0, vs. the longitudinal coordinate x. The subfigures correspond frame per
frame to those of Fig. 5a.
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cal results, we note the change in the behavior
of U vs. e, as lF is varied. The curves decrease
monotonically with e, except when lF is suffi-
ciently negative. For those cases, the value of U
initially increases, in agreement with Eqs. 7,
leading to an important overshoot above 1,
which is attributed to the increase of the burn-
ing temperature and intensification of the reac-
tion at the leading front. The physical mecha-
nisms leading to this intensification are well
known from the studies on curved and stretched
premixed flames. Despite this intensification,
the propagation speed ultimately decreases, for
sufficiently high values of e, due to the heat
losses transverse to the direction of propaga-
tion.

Another important observation which can be
drawn from Fig. 6 is the existence of a critical
negative value of lF, say l*F 5 b(Le* 2 1),

below which negative propagation speeds, or
extinction fronts, are impossible. For our choice
of the fixed parameters (given in the captions of
Fig. 2, for example), this value is seen to lie
between 25 and 24.

Common to each case with lF . l*F is the
existence of a range of e with negative speeds of
the front as found for triple flames under strain
[7–9]. The upper limit of this range is eext, the
extinction value of the planar structure, indi-
cated by a downwards arrow on the e-axis.7

For lF , l*F, say lF 5 25, the propagation
velocity is strictly positive as e 3 eext

2 . When e
exceeds eext, the infinite structure disintegrates
since the planar (twin-flame) burning solution
far behind the leading edge, x .. 1, does not
exist for e . eext. However, this does not
necessarily lead to total extinction, since com-
bustion can still persist if LeF is small, as the
numerical results indicate, in the form of finite-
extent structures, or two-dimensional burning
spots. These are similar to the flame balls
encountered outside the normal flammability
limits, [10, 11]. To describe these structures, we
shall examine the simplest spatial distribution,
characterized by a single burning spot in the
flow. For lF 5 25, such an isolated spot8 exists
if e is, roughly, in the range [2.4–3.2], repre-
sented by a horizontal line segment in Fig. 6.
This range is reduced for lF 5 24, as indicated
in the same figure. For smaller values of lF, say
lF , 23, such modes of combustion are not
found, according to numerical experimentation.

For illustration, Fig. 7 depicts, for three cases
corresponding to lF 5 25 and to different
values of e, the burning spots under discussion.
In Figs. 7a and 7b combustion rate and temper-
ature contours are plotted, respectively, which
should be completed by symmetry about the x
and y-axes. The corresponding mass fraction,
temperature, and combustion rate profiles at
the centerline, y 2 0, are given in Fig. 7c. As e
is increased beyond the value of the bottom
subfigure, total extinction of the two-dimen-
sional structure results; as e is decreased below
its value in the upper subfigure, the numerical

tends to a locally planar unstretched premixed flame in the
limit e 3 0. This point is not pursued in the present paper.

7eext is extracted from Fig. 2.
8The burning spot solution corresponds to the governing
equations (2) with U 5 0 and the far-field boundary
condition u 5 1 2 yF 5 0.

Fig. 6. Propagation speed U versus e for five values of lF, lF

5 25, 24, 23, 0, and 3. For each lF, U has been
normalized by the corresponding planar (unstretched) flame
speed obtained numerically. The calculated speeds are
represented by small circles and have been restricted to e $

0.2 to ensure sufficient numerical resolution. For e , 0.2,
solid curves starting from the point (e 5 0, U 5 1) and
corresponding to the asymptotic expression (7.a) are plotted
for the five values of lF given above (the upper curve is for
lF 5 25 and the lower one for lF 5 3). The values of e, eext,
corresponding to the extinction of the planar structure
(given in Fig. 2), are indicated by downward arrows on the
e-axis. Two horizontal segments indicate the e-range of
existence of steady nonpropagating combustion in the form
of two-dimensional burning spots, for lF 5 24 and lF 5 25
respectively. These burning spots are described in Fig. 7.
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Fig. 7. (a) Combustion rate contours associated with 2D
burning nonpropagating spots corresponding to lF 5 25
and, from top to bottom, to e 5 2.4, 2.8, and 3.2, respec-
tively. In each subfigure, which are to be completed by
symmetry about the x-axis and y-axis, six isocontours of the
combustion rate, v, are plotted equidistributed between
zero and the maximum of v, vmax (also indicated). As e is
increased beyond the value of the bottom subfigure, total
extinction of the two-dimensional structure results; as e is
decreased below its value in the upper subfigure, the infinite
extent burning structure is recovered. (b) Same as Fig. 7a,
with temperature contours being plotted instead of combus-
tion rate contours. (c) Temperature, mass fraction, and
combustion rate profiles at centerline, y 5 0, vs. the
longitudinal coordinate x. The subfigures correspond frame
per frame to those of Figs. 7a and 7b.
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results suggest the recovery of the infinite-
extent burning structure. Note that, for lF 5
25, the ranges of existence of the finite-extent
spots and infinite-extent fronts do not overlap.
Nevertheless these ranges do overlap for lF 5
24 (Fig. 6). In this latter case, the 2D spot
combustion regime extends down to the value of
e corresponding to the zero-propagation veloc-
ity of the flame fronts, described above.

A remark is here in order. We have just seen,
when the ignition-extinction fronts disintegrate,
that combustion is still able to persist in the
form of 2D spots, in a certain domain of the (e,
lF) plane. We have also observed that an over-
lap of the domains of existence of the 2D spots,
and propagating fronts regimes is possible. In
the same fashion, one may expect that combus-
tion in the form of 3D spots, or deformed flame
balls, could be the only possible regime in
certain circumstances, with a possible overlap
with the aforementioned regimes. Although this
point is not investigated in the present study, it
is relevant to note that such flame balls stabi-
lized by the two-dimensional flow considered
herein, or more generally by flows that are
linear functions of the coordinates, have been
described by Buckmaster and Joulin [12]. Fi-
nally, it is instructive to examine the similarities
and complementary aspects between the
present results and the closely related recent
findings in [13–15].

CONCLUDING REMARKS

In this work, we have described the possibility of
flame propagation in a two-dimensional coun-
terflow of premixed reactive gases, in a direction
perpendicular to the plane of strain. The find-
ings can be used to analyze with some detail
ignition and extinction events in the idealized
flow under consideration, a step toward a better
understanding of such events in realistic, more
complicated flows. The results have shown the
existence of ignition and extinction fronts in
premixed systems which share many similarities
with their counterparts, the triple flames, in
unpremixed systems. Those similarities are par-
ticularly apparent, for example, if one plots the
propagation velocity U against a suitably de-

fined Damköhler number, and for different
values of the Fuel Lewis number. Without un-
derlining here the main findings, given in the
abstract, we shall simply illustrate their use in an
“ignition” problem. Consider the evolution of
combustion, in the flow under consideration,
from an initial two-dimensional hot spot of
burnt gases. Then Fig. 6, representing U vs. e 5
Da21/ 2, suggests the following conclusions. For
ignition to be successful, it is necessary in usual
mixtures, characterized by a Lewis number close
to 1, that e be such that the corresponding U in
Fig. 6 be positive. Successful ignition in this case
leads to propagating fronts. However, if the
Lewis number is sufficiently small, successful
ignition may result in steadily burning finite-
extent, two-dimensional spots, if e is within a
given range.
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9. Daou, J., and Liñán, A., Combust. Theory Modelling, 2,

449–477 (1998).
10. Zeldovich, Y. B., Barenblatt, G. I., Librovich, V. B.,

and Makhviladze, G. M., The Mathematical Theory of
Combustion and Explosions, Consultants Bureau, New
York, 1985, p. 332.

11. Ronney, P. D., Combust. Flame 82:1–14 (1993).
12. Buckmaster, J., and Joulin, G., JFM 227:407–427

(1991).
13. Liu, J. B., and Ronney, P. D., Premixed edge-flames in

spatially-varying straining flows Combust. Flame (in
press).

14. Vedarajan, T. G. and Buckmaster, J. D., Combust.
Flame 114:267 (1998).

15. Shay, M. L. and Ronney P. D. Combust. Flame 112:
171 (1998).

Received 21 July 1998; revised 18 November 1998; accepted 9
December 1998

488 J. DAOU AND A. LIÑÁN


