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EFFECT OF VOLUMETRIC HEAT LOSS ON TRIPLE-FLAME PROPAGATION

R. DAOU, J. DAOU and J. DOLD
Department of Mathematics, UMIST, Manchester M60 1QD, United Kingdom

We present a numerical study of the effect of volumetric heat loss on the propagation of triple flames
in the strained mixing layer formed between two opposed streams of fuel and air. The propagation speed
of the triple flame is computed for a wide range of values of two non-dimensional parameters: a normalized
flame thickness e, proportional to the square root of the strain rate, and a heat-loss parameter j. It is shown
that, for relatively small values of j, the propagation speed U is decreased by heat loss, and its dependence
on e is similar to the adiabatic case, known in the literature; in particular, a monotonic decrease in the
speed from positive to negative values is observed as e is increased. However, for j larger than a critical
value, this monotonic behavior is lost. It is shown that the more complex behavior obtained is mainly
associated with the fact that, in the presence of heat loss, the trailing planar diffusion flame is extinguished
both for sufficiently large and sufficiently small values of the strain rate. Moreover, for sufficiently small
values of e, the dependence of U on j is similar to that of the non-adiabatic planar premixed flame, with
total extinction occurring for a finite positive value of U. On the other hand, for larger values of e, negative
speeds, corresponding to extinction fronts, appear before total extinction is brought about by an increase
in j. A summary of the main results is provided by delimiting the different combustion regimes observed
in the j–e plane.

Fig. 1. The counterflow configuration.

Introduction

The importance of triple flames is now well estab-
lished, in applications involving combustion phe-
nomena, such as flame spread over solid or liquid
fuel surfaces, flame propagation in mixing layers, dy-
namic extinction of diffusion flames, and flame sta-
bilization in reactive streams. Early experimental ob-
servation of this structure was made by Phillips [1]
and an early analytical description appears in Ohki
and Tsuge [2]. Detailed analysis of triple flames and
their propagation regimes was undertaken by Dold
and collaborators [3,4]. Several aspects of the prob-
lem have since been investigated, including the ef-
fect of gas expansion, the influence of non-unit
Lewis numbers and the stability of triple flames (see
Refs. [5–11] and references therein).

The aim of this work is to extend current knowl-
edge of triple flames by taking into account the in-
fluence of volumetric heat loss. This aspect of the
problem seems to have received no attention, at least
as far as the prototypical counterflow configuration
is concerned. The aim of this paper is to investigate
how triple flames, and their propagation regimes, are
affected by volumetric heat loss in this configuration.
The paper is structured as follows: the problem is
first formulated in the context of a thermo-diffusive
approximation, with constant density and constant
transport properties and a single Arrhenius reaction;
this is followed by presentation and discussion of the
numerical findings, in terms of two main parameters
related to the strain rate and the rate of heat loss.

Formulation

The study is carried out in the familiar counterflow
configuration, illustrated in Fig. 1, with the upper
stream carrying oxidizer and the lower stream car-
rying fuel. The flow components are given by vX �
0, vY � �aY and vZ � aZ, in the X,Y, and Z direc-
tions, respectively, with a denoting the strain rate.
We shall address the steady propagation of triple
flames in the mixing layer along the X axis, with the
propagation speed Û being positive if the fronts
are moving along the negative X direction. The
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chemistry is modeled by a single irreversible one-
step reaction of the form F � s Ox r P � q, where
F denotes the fuel, Ox the oxidizer, and P the prod-
ucts. The quantities s and q represent the proportion
of oxidizer consumed, to fuel consumed, and the
heat released per unit mass of fuel. The reaction
rate, is assumed to follow an Arrhenius law of thex̂,
form � Bq2YFYO exp(�E/RT), where B, q, YF,x̂
YO, and E/R represent the pre-exponential factor,
the (constant) density, the mass fractions of fuel and
oxidizer, and the activation temperature, respec-
tively. The stretching of the flow in the Z direction
tends to make the system uniform in Z, so that, in a
reference frame attached to the flame, the governing
equations become

2 2�T � T � T q x̂
Û � D � �T � �2 2�X c q�X �Y p

�T
� aY � ĵ(T � T ) (1)0�Y

2 2�Y � Y � YF F FÛ � D �F � 2 2 ��X �X �Y

x̂ �YF
� � aY (2)

q �Y
2 2�Y � Y � YO O OÛ � D �O � 2 2 ��X �X �Y

x̂ �YO
� s � aY (3)

q �Y

Here, DF, DO, and DT are constant diffusion coef-
ficients. The last term on the right of equation 1 is
included to account for a linear volumetric heat loss
with coefficient the temperature in both incomingĵ,
streams being T0. The boundary conditions for equa-
tions 1–3, given in non-dimensional form below, cor-
respond to the planar Y-dependent frozen solution
as X r �� or Y r ��, and to vanishing X deriva-
tives as X r ��.

The non-dimensional formulation of the problem
follows Ref. [9] with the scaled dependent variables
being defined by

Y Y T � TF O 0y � , y � , and h �F OY Y T � TF,st O,st ad 0

Here the subscript ‘‘st’’ refers to values at (X � ��,
Y � Yst), where Yst is the location of the upstream
stoichiometric surface defined by YO � sYF, or

1/2S erf(Y /(2D /a) )st F

1/2� erf(Y /(2D /a) ) � S � 1st O

with S � The quantity Tad iss(Y | )/(Y | ).F y�� O y���

defined by Tad � T0 � qYF,st/Cp. As unit length, we
select L/b, where L � (2DT/a)1/2 is the (thermal)
mixing layer thickness and b � E(Tad � is2T )/RT0 ad

the Zeldovich number; the unit of length is then a
typical radius of curvature of a triple flame. As unit
speed, we adopt the laminar speed of a stoichio-
metric planar flame, or more precisely its asymptotic
value for large b under adiabatic equidiffusional
conditions, namely � (4b�3YO,stqDTB exp0SL
(�E/RTad))1/2.

In terms of the coordinates y � b(Y � Yst)/L and
x � bX/L, equations 1–3 now assume the non-di-
mensional form

2 2�h � h � h �1U � e � � e x� 2 2��x �x �y
�12e y �h e

� g � � jh (4)s� �b b �y b

2 2�y e � y � yF F F �1U � � � e x� 2 2 ��x Le �x �yF

2e y �yF
� g � (5)s� �b b �y

2 2�y e � y � yO O O �1U � � � e x� 2 2 ��x Le �x �yO

2e y �yO
� g � (6)s� �b b �y

Here, the parameter e, the square of which is the
inverse of the Damköhler number, is defined by

0 1/2l b(D /2)Fl T 1/2e � � a0L/b SL

It represents the thickness of the laminar stoichio-
metric flame � measured in terms of our0 0l D /S ,Fl T L
standard unit of length L/b. The Lewis numbers of
fuel and oxidizer are LeF � DT/DF and LeO �
DT/DO, and gs � Yst/(2DT/a)1/2 characterizes the
location of the upstream stoichiometric surface. The
non-dimensional heat loss coefficient is j �

and x is given by0 2b(D /S )ĵT L

3b b(h � 1)
x � y y exp (7)F O � �4 1 � �(h � 1)

with � � (Tad � T0)/Tad.
In terms of the new variables, the boundary con-

ditions as x r �� or y r �� are

h � 0
1/21 � erf[(g � y/b)Le ]s Fy �F 1/21 � erf(g Le )s F

1/21 � erf((g � y/b)Le )s Oy � (8)O 1/21 � erf(g Le )s O
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Fig. 2. Contours of the reaction rate (left) and tempera-
ture (right) for the cases j � 0 with e � 0.2 (top),
e � 1.2 (middle), and e � 2.7 (bottom).

and as x r ��

�h �y �yF O
� � � 0 (9)

�x �x �x

In solving this problem, the main aim is to determine
the (scaled) propagation speed U in terms of the non-
dimensional parameters e, j, LeF, LeO, and gs (as well
as b and �). In this study, we provide detailed nu-
merical results in terms of the parameters e and j.

Results

The problem consisting of equations 4–6 with the
boundary conditions 8 and 9 is solved numerically.
The numerical method is the same as the one used
in Ref. [9] and is based on a finite volume discreti-
zation combined with an algebraic multigrid solver
[12]. The computational domain dimensions are typ-
ically 10 times the mixing layer thickness in the y
direction and 100 times the planar laminar flame
thickness in the x direction. The grid is non-uniform
with typically 200,000 points. We report results

describing the dependence on the parameters e and
j, with the other parameters being assigned fixed
values, namely b � 8, � � 0.85, gs � 0, and
LeF � LeO � 1.

We begin by presenting a reference case corre-
sponding to the familiar adiabatic situation j � 0.
Shown in Fig. 2 are reaction rate contours (left) and
corresponding temperature contours (right). The
subfigures correspond to e � 0.2, 1.2, and 2.7, from
top to bottom, with the last value characterizing
near-extinction conditions. The contours are equi-
distributed between zero and the maximum value of
the field, which is indicated in each subfigure. The
dimensionless leading front becomes thicker for
larger values of e (or strain rate) which is accompa-
nied by a decrease in the propagation speed from
positive to negative values (see Fig. 4). Of course, in
the limit e r 0, corresponding to large Damköhler
numbers, the temperature of the trailing diffusion
flame increases to unity, its adiabatic value, while the
corresponding reaction rate x decreases to zero (due
to a vanishing rate of supply of the reactants to the
reaction zone); as e is increased this trend is re-
versed, at least up to near-extinction conditions (ob-
tained for sufficiently high strain rates).

To illustrate the influence of heat loss on the triple
flame, Fig. 3 depicts the same situation as Fig. 2,
with j � 0.04, for e � 0.2, 1.2, and 2.4; the final
value again characterizes near-extinction conditions
and is smaller than in the adiabatic case. An impor-
tant feature associated with the presence of heat loss
is the extinction of the trailing diffusion flame for
small values of e, as can be observed in the top sub-
figures. Otherwise, the behavior of the triple flame
as e is increased is similar to the adiabatic case, with
the fronts evolving continuously from propagating
fronts to retreating fronts until total extinction oc-
curs.

However, it is important to note that the last re-
mark is valid only for sufficiently small values of j.
For j larger than some critical value, more complex
behavior is obtained. This is best illustrated by plot-
ting the propagation speed U versus e for selected
values of j, as done in Fig. 4. The curve labeled
j � 0 in this figure is the well-known adiabatic case.
This curve has a vertical slope for a critical value of
e which characterizes the total extinction of the tri-
ple-flame structure. As explained in Ref. [13], this
critical value is associated with the quenching of the
planar diffusion flame by an excessively high strain
rate. We note that the curve labeled j � 0.04 dis-
plays a similar trend, in line with the observations
above, but that the cases corresponding to higher
values of j exhibit a markedly different behavior. In
particular, the dependence of U on e is no longer
monotonic and, in fact, the e-domain of existence of
the flame fronts separates into two disjoint intervals;
this is clearly seen in the curves corresponding to
j � 0.05 and 0.06. For yet larger values of j, no
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Fig. 3. Contours of the reaction rate (left) and tempera-
ture (right) for the cases j � 0.04 with e � 0.2 (top),
e � 1.2 (middle), and e � 2.4 (bottom).

Fig. 5. Plots of U versus j for selected values of e.

z

Fig. 6. Maximum temperature versus e for selected val-
ues of j for the planar diffusion flame.

z

Fig. 4. Plots of U versus e for selected values of j.

ceases to exist for excessive heat losses even though
a narrower flame edge can still exist at higher values
of e (according to numerical experiments). For larger
values of j, approximately j � 0.1 in this example,
we found no burning solutions for any value of e.

Another instructive way of examining the results
just presented is to plot U versus j for selected val-
ues of e, as in Fig. 5. For small values of e, the de-
pendence of U on j is similar to that of the non-
adiabatic planar flame, with extinction occurring at
a finite positive speed. This can be confirmed by an
asymptotic analysis in the limit e r 0, which is not
included here due to space limitations. From the
figure, we can also conclude that retreating triple
flames (or extinction fronts, having U � 0) can be
obtained by increasing the intensity of the heat loss
only if e (or the strain rate) is above a critical value.

To understand better the dependence of U on e,
in the presence of heat loss, it is useful to compare
it with a numerical description of the planar

solutions are found for small values of e, as seen in
the curve for j � 0.08. This can be explained by the
fact that, as e r 0, the propagation speed tends to
that of the stoichiometric planar flame, but the latter
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Fig. 7. Regimes of triple-flame propagation, with and
without an associated diffusion flame, in the presence of
heat loss.

diffusion flame over the same ranges of parameters.
The latter is presented in Fig. 6, where the maxi-
mum temperature of the planar diffusion flame is
plotted against e for several values of j. We note that
for any non-zero value of j, there are two extinction
values of e, a fact that is known in the literature (see,
for example, Refs. [14–17]). The larger extinction
limit, which is also encountered in the adiabatic case,
is due to flame quenching by an excessively high
strain rate. The lower extinction limit is partly asso-
ciated with the fact that the rate of heat generation
by the chemical reaction decreases as the strain rate
(or reactant supply) is decreased, leading to extinc-
tion for any non-zero value of j; moreover, the total
size of the region of hot gas also increases, which
increases the total heat loss and lowers the flame
temperature. The fact that extinction must occur can
be seen from the following simple, order-of-magni-
tude argument.

From the diffusive-reactive balance in the thin re-
action zone, of typical (non-dimensional) thickness
dr, say, we have from the one-dimensional y-depen-
dent version of equations 5 and 6

ȳ ȳF O �2� � e x̄2 2d dr r

where the bars indicate typical values in the reaction
zone. From equation 7, supposing that is close toh̄
unity

3x̄ � b ȳ ȳF O

Since the order of magnitude of the gradients of yF
and yO in the reaction zone, ȳF/dr and ȳO/dr, respec-
tively, are the same as in the mixing layer (whose
non-dimensional thickness is b, given our choice of
unit length) we may write

ȳ ȳ 1F O� �
d d br r

From the last three equations, it follows that dr �
b�2/3e2/3, and

�1/3 4/3x̄ � b e

Now, using the temperature equation 4, we see that
the effective rate of heat generation (accounting for
heat loss) is given, in order of magnitude, by � j/b.x̄
This quantity becomes negative in the limit e r 0,
indicating that the temperature decreases, leading to
extinction, whenever j � 0. It also indicates that ex-
tinction must occur at least when j � O(b2/3e4/3), or
larger. For the adiabatic case, j � 0, extinction is
impossible as e r 0, since the net rate of heat gen-
eration remains positive, although it becomes vanish-
ingly small. This is the classical Burke–Schumann
limit.

We now return to Figs. 4 and 6, where it is seen,
by comparing, for example, the curves labeled j �
0.06, that the more complex dependence of U on e
when j � 0 is directly linked to the behavior of the
planar diffusion flame. This explains, when j is not
too small, both the monotonic variation of U with e
and the fact that the e-domain of existence of the
flame fronts consists of two disjoint intervals. For
small values of j, for example j � 0.04, the lower
extinction limit of the diffusion flame occurs at val-
ues of e, which are sufficiently small to have a neg-
ligible effect on the propagation speed. This is be-
cause, for sufficiently small values of e, the leading
premixed front is negligibly affected by the proper-
ties of the fields downstream, and hence by the trail-
ing diffusion flame.

Finally, a summary of the main results is presented
in Fig. 7 in the space of j and e. The dashed line
characterizes the extinction limits of the planar dif-
fusion flame extracted from the previous figure. The
squares correspond to the complete extinction of the
triple-flame structure, and are (partially) extracted
from Fig. 5. The triangles describe conditions with
zero-propagation speeds. Four combustion regimes
can thus be delimited in the j–e plane.

1. In the domain labeled A, to the right of the
squares, the triple-flame structure is extin-
guished. We note that the extinction in this case
is dictated by the extinction of the diffusion flame
in situations where the squares lie on the dashed
line. This occurs for e larger than a critical value
e* which is seen to be close to 0.7. For small val-
ues of the strain rate (more precisely for e � e*),
the triple-flame structure survives in situations
where the planar diffusion flame is extinguished.

2. In the domain labeled B, to the left of the squares
and below the lower branch of the dashed curve,
the triple flames have positive speeds and no trail-
ing diffusion-flame tail (far downstream), as



1564 LAMINAR FLAMES—Partially-Premixed Flames

exemplified in the top subfigure of Fig. 3. We
could call these tailless triple flames. More gen-
erally, such structures arise in situations where
the flame behind a flame edge is extinguished but
the edge itself continues to survive. Such struc-
tures share some similarities with those encoun-
tered in low Lewis number triple-flame studies
(see Ref. [18]) where oscillatory propagation
arises.

3. In domain C, below the triangles and above do-
main B, triple flames with positive speeds and
trailing diffusion-flame tails are encountered.
These may be referred to as ignition fronts of the
diffusion flame, as in the familiar adiabatic situ-
ation.

4. In the remaining domain, D, negatively propa-
gating triple flames (retreating fronts) are ob-
tained, again as found in the adiabatic situation.

Conclusion

We have presented a numerical description of tri-
ple-flame propagation in a strained mixing layer un-
der nonadiabatic conditions. The results indicate
that various combustion regimes arise, due to the
difference in sensitivity to heat loss of the premixed
leading front and trailing diffusion flame. In partic-
ular, a synthesis of the main findings has been given
in terms of the heat-loss intensity and the strain rate.
It is worth pointing out that the solutions presented
have been obtained by solving the steady-state-gov-
erning equations. Their stability, which has not been
addressed in this work, will be checked in future
studies by solving the corresponding time-depen-
dent problem.
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COMMENTS

Ishwar K. Puri, University of Illinois at Chicago, USA. I
applaud your motivation; your results are intuitive and
some are well known, namely, reduction in flame propa-
gation speed with heat loss and extinction, and the for-
mation of a flame nub with increasing stretch. However, I
have some reservation. You assume a uniform global vol-
umetric heat loss, whereas a real radiating flame would lose
heat according to its non-uniform product distribution.
Further, whereas you have assumed a constant strain rate,
a realistic flame experiences non-uniform stretch along its
topology that depends on flame curvature, hydrodynamic
straining, and flame thickness.

Author’s Reply. The objective of the article is to establish
qualitative rather than quantitative accuracy in describing
the effect of heat loss on strained triple flames. This is as

much as can be expected when, for example, using a one-
step model for the chemistry. For this purpose, using a
simple model has numerous advantages. A more sophisti-
cated model could certainly be adopted, and the likelihood
is that exactly the same forms of behavior would be ob-
served, differing only in detail. The model adopted here,
including that for heat loss, is chosen to fit in with other
studies which, for example, have indeed shown a reduction
in the flame speed of a planar premixed flame with heat
loss, as you say. However, we are aware of no existing an-
alytical or numerical studies that describe the combination
of phenomena that we have observed, including the ap-
pearance of a tailless propagating flame edge. We have re-
cently submitted another article that examines the phe-
nomena from a more analytical perspective, which is most
easily done using a simple linear model for global heat loss.


	Table of Contents
	HOMEPAGE

