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Abstract

We present a numerical study of the effect of volumetric heat-loss on the propagation
of triple flames in the strained mixing layer formed between two opposed streams of
fuel and air. The propagation speed of the triple flame is computed for a wide range of
values of two non-dimensional parameters: a normalised flame thickness ε, proportional
to the square root of the strain rate, and a heat-loss parameter κ. It is shown that for
relatively small values of κ, the propagation speed U is decreased by heat loss, and its
dependence on ε is similar to the adiabatic case, known in the literature; in particular
a monotonic decrease in the speed from positive to negative values is observed as ε

is increased. However, for κ larger than a critical value, this monotonic behaviour
is lost. It is shown that the more complex behaviour obtained is mainly associated
with the fact that, in the presence of heat loss, the trailing planar diffusion flame is
extinguished both for sufficiently large and sufficiently small values of the strain rate.
Moreover, for sufficiently small values of ε, the dependence of U on κ is similar to
that of the non-adiabatic planar premixed flame, with total extinction occuring for a
finite positive value of U . On the other hand, for larger values of ε, negative speeds,
corresponding to extinction fronts, appear before total extinction is brought about by
an increase in κ. A summary of the main results is provided by delimiting the different
combustion regimes observed in the κ - ε plane.

1

Sell
daour60073



Introduction

The importance of triple flames is now well established, in applications involving combustion

phenomena, such as flame spread over solid or liquid fuel surfaces, flame propagation in

mixing layers, dynamic extinction of diffusion flames and flame stabilisation in reactive

streams. Early experimental observation of this structure was made by Phillips [1] and an

early analytical description appears in Ohki and Tsuge [2]. Detailed analysis of triple flames

and their propagation regimes was undertaken by Dold and collaborators [3, 4]. Several

aspects of the problem have since been investigated, including the effect of gas expansion,

the influence of non-unit Lewis numbers and the stability of triple flames (see [5]–[11] and

references therein).

The aim of this work is to extend current knowledge of triple flames by taking into account

the influence of volumetric heat loss. This aspect of the problem seems to have received no

attention, at least as far as the prototypical counterflow configuration is concerned. The

aim of this paper is to investigate how triple flames, and their propagation regimes, are

affected by volumetric heat loss in this configuration. The paper is structured as follows:

the problem is first formulated in the context of a thermo-diffusive approximation, with

constant density and constant transport properties and a single Arrhenius reaction; this

is followed by presentation and discussion of the numerical findings, in terms of two main

parameters related to the strain rate and the rate of heat loss.

Formulation

The study is carried out in the familiar counterflow configuration, illustrated in Fig. 1, with

the upper stream carrying oxidizer and the lower stream carrying fuel. The flow components

are given by vX = 0, vY = −aY and vZ = aZ, in the X, Y and Z directions, respectively,

with a denoting the strain-rate. We shall address the steady propagation of triple flames in

the mixing layer along the X-axis, with the propagation speed Û being positive if the fronts

are moving along the negative X-direction. The chemistry is modelled by a single irreversible
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Figure 1: The counterflow configuration.

one-step reaction of the form F+s Ox → P+q where F denotes the fuel, Ox the oxidizer and

P the products. The quantities s and q represent the proportion of oxidizer consumed, to

fuel consumed, and the heat released per unit mass of fuel. The reaction rate, ω̂, is assumed

to follow an Arrhenius law of the form ω̂ = Bρ2YFYO exp(−E/RT ), where B, ρ, YF, YO

and E/R represent the pre-exponential factor, the (constant) density, the mass fractions of

fuel and oxidizer and the activation temperature, respectively. The stretching of the flow

in the Z direction tends to make the system uniform in Z, so that, in a reference frame

attached to the flame, the governing equations become

Û
∂T

∂X
= DT

(
∂2T

∂X2
+

∂2T

∂Y 2

)
+

q

cp

ω̂

ρ
+ aY

∂T

∂Y
− κ̂(T − T0) (1)

Û
∂YF

∂X
= DF

(
∂2YF

∂X2
+

∂2YF

∂Y 2

)
− ω̂

ρ
+ aY

∂YF

∂Y
(2)

Û
∂YO

∂X
= DO

(
∂2YO

∂X2
+

∂2YO

∂Y 2

)
− s

ω̂

ρ
+ aY

∂YO

∂Y
. (3)

Here, DF, DO and DT are constant diffusion coefficients. The last term on the right of

equation (1) is included to account for a linear volumetric heat-loss with coefficient κ̂, the

temperature in both incoming streams being T0. The boundary conditions for (1)–(3), given

in non-dimensional form below, correspond to the planar Y -dependent frozen solution as

X → −∞ or Y → ±∞, and to vanishing X-derivatives as X → +∞.

The non-dimensional formulation of the problem follows [9] with the scaled dependent
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variables being defined by

yF =
YF

YF,st

, yO =
YO

YO,st

and θ =
T − T0

Tad − T0

.

Here the subscript ‘st’ refers to values at (X = −∞, Y = Yst), where Yst is the location of

the upstream stoichiometric surface defined by YO = sYF, or

S erf(Yst/(2DF/a)1/2) + erf(Yst/(2DO/a)1/2) = S − 1,

with S ≡ s(YF|y=∞)/(YO|y=−∞). The quantity Tad is defined by Tad ≡ T0 +qYF,st/cp. As unit

length, we select L/β, where L ≡ (2DT /a)1/2 is the (thermal) mixing layer thickness and

β ≡ E(Tad − T0)/RT 2
ad is the Zeldovich number; the unit of length is then a typical radius

of curvature of a triple flame. As unit speed, we adopt the laminar speed of a stoichiometric

planar flame, or more precisely its asymptotic value for large β under adiabatic equidiffusional

conditions, namely S0
L = (4β−3YO,stρDT B exp(−E/RTad))1/2.

In terms of the coordinates y ≡ β(Y − Yst)/L and x ≡ βX/L, equations (1)–(3) now

assume the non-dimensional form

U
∂θ

∂x
= ε

(∂2θ

∂x2
+

∂2θ

∂y2

)
+ ε−1ω +

2ε

β

(
ηs +

y

β

)∂θ

∂y
− ε−1

β
κθ (4)

U
∂yF

∂x
=

ε

LeF

(∂2yF

∂x2
+

∂2yF

∂y2

)
− ε−1ω +

2ε

β

(
ηs +

y

β

)∂yF

∂y
(5)

U
∂yO

∂x
=

ε

LeO

(∂2yO

∂x2
+

∂2yO

∂y2

)
− ε−1ω +

2ε

β

(
ηs +

y

β

)∂yO

∂y
. (6)

Here, the parameter ε, the square of which is the inverse of the Damköhler number, is defined

by

ε ≡ l0Fl

L/β
≡ β(DT /2)1/2

S0
L

a1/2.

It represents the thickness of the laminar stoichiometric flame l0Fl = DT /S0
L, measured in

terms of our standard unit length L/β. The Lewis numbers of fuel and oxidizer are LeF ≡

DT /DF and LeO ≡ DT /DO, and ηs ≡ Yst/(2DT /a)1/2 characterizes the location of the up-

stream stoichiometric surface. The nondimensional heat loss coefficient is κ ≡ β(DT /S0
L

2
)κ̂

and ω is given by

ω ≡ β3

4
yF yO exp

( β(θ − 1)

1 + α(θ − 1)

)
(7)
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with α ≡ (Tad − T0)/Tad.

In terms of the new variables, the boundary conditions as x → −∞ or y → ±∞ are

θ = 0,

yF =
1 − erf((ηs + y/β)Le

1/2
F )

1 − erf(ηsLe
1/2
F )

,

yO =
1 + erf((ηs + y/β)Le

1/2
O )

1 + erf(ηsLe
1/2
O )

(8)

and as x → +∞

∂θ

∂x
=

∂yF

∂x
=

∂yO

∂x
= 0. (9)

In solving this problem, the main aim is to determine the (scaled) propagation speed U in

terms of the non dimensional parameters ε, κ, LeF, LeO and ηs (as well as β and α). In this

study we provide detailed numerical results in terms of the parameters ε and κ.

Results

The problem consisting of equations (4)–(6) with the boundary conditions (8)–(9) is solved

numerically. The numerical method is the same as the one used in [9] and is based on a finite

volume discretization combined with an algebraic multigrid solver [12]. The computational

domain dimensions are typically 10 times the mixing layer thickness in the y-direction and

100 times the planar laminar flame thickness in the x-direction. The grid is non-uniform

with typically 200 000 points. We report results describing the dependence on the parameters

ε and κ, with the other parameters being assigned fixed values, namely β = 8, α = 0.85,

ηs = 0 and LeF = LeO = 1.

We begin by presenting a reference case corresponding to the familiar adiabatic situation

κ = 0. Shown in Fig. 2 are reaction rate contours (left) and corresponding temperature

contours (right). The subfigures correspond to ε = 0.2, 1.2 and 2.7, from top to bottom, with

the last value characterizing near-extinction conditions. The contours are equidistributed

between zero and the maximum value of the field, which is indicated in each subfigure. The
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Figure 2: Contours of the reaction rate (left) and temperature (right) for the cases κ = 0

with ε = 0.2 (top), ε = 1.2 (middle) and ε = 2.7 (bottom).

dimensionless leading front becomes thicker for larger values of ε (or strain rate) which is

accompanied by a decrease in the propagation speed from positive to negative values (see

later, in Fig. 4). Of course, in the limit ε → 0, corresponding to large Damköhler numbers,

the temperature of the trailing diffusion flame increases to unity, its adiabatic value, while

the corresponding reaction rate ω decreases to zero (due to a vanishing rate of supply of

the reactants to the reaction zone); as ε is increased this trend is reversed, at least up to

near-extinction conditions (obtained for sufficiently high strain rates).

To illustrate the influence of heat-loss on the triple flame, Fig. 3 depicts the same situation

as Fig. 2, with κ = 0.04, for ε = 0.2, 1.2 and 2.4; the final value again characterizes

near-extinction conditions and is smaller than in the adiabatic case. An important feature

associated with the presence of heat-loss is the extinction of the trailing diffusion flame for

small values of ε, as can be observed in the top subfigures. Otherwise, the behaviour of
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Figure 3: Contours of the reaction rate (left) and temperature (right) for the cases κ = 0.04

with ε = 0.2 (top), ε = 1.2 (middle) and ε = 2.4 (bottom).

the triple flame as ε is increased is similar to the adiabatic case, with the fronts evolving

continuously from propagating fronts to retreating fronts until total extinction occurs.

However, it is important to note that the last remark is valid only for sufficiently small

values of κ. For κ larger than some critical value, more complex behaviour is obtained. This

is best illustrated by plotting the propagation speed U versus ε for selected values of κ, as

done in Fig. 4. The curve labelled κ = 0 in this figure is the well-known adiabatic case. This

curve has a vertical slope for a critical value of ε which characterises the total extinction

of the triple flame structure. As explained in [13], this critical value is associated with the

quenching of the planar diffusion flame by an excessively high strain rate. We note that the

curve labelled κ = 0.04 displays a similar trend, in line with the observations above, but

that the cases corresponding to higher values of κ exhibit a markedly different behaviour.

In particular, the dependence of U on ε is no longer monotonic and, in fact, the ε-domain
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Figure 4: Plots of U versus ε for selected values of κ.

of existence of the flame fronts separates into two disjoint intervals; this is clearly seen in

the curves corresponding to κ = 0.05 and 0.06. For yet larger values of κ, no solutions are

found for small values of ε, as seen in the curve for κ = 0.08. This can be explained by the

fact that, as ε → 0, the propagation speed tends to that of the stoichiometric planar flame,

but the latter ceases to exist for excessive heat losses even though a narrower flame edge can

still exist at higher values of ε (according to numerical experiments). For larger values of κ,

approximately κ > 0.1 in this example, we found no burning solutions for any value of ε.

Another instructive way of examining the results just presented is to plot U versus κ for

selected values ε, as in Fig. 5. For small values of ε, the dependence of U on κ is similar to

that of the non-adiabatic planar flame, with extinction occuring at a finite positive speed.

This can be confirmed by an asymptotic analysis in the limit ε → 0, which is not included

Figure 5: Plots of U versus κ for selected values of ε
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Figure 6: Maximum temperature versus ε for selected values of κ for the planar diffusion

flame.

here due to space limitations. From the figure we can also conclude that retreating triple

flames (or extinction fronts, having U < 0) can be obtained by increasing the intensity of

the heat loss only if ε (or the strain rate) is above a critical value.

In order to understand better the dependence of U on ε, in the presence of heat-loss, it is

useful to compare it with a numerical description of the planar diffusion flame over the same

ranges of parameters. The latter is presented in Fig. 6, where the maximum temperature

of the planar diffusion flame is plotted against ε for several values of κ. We note that for

any non-zero value of κ, there are two extinction values of ε, a fact that is known in the

literature (see for example [14]–[17]). The larger extinction limit, which is also encountered

in the adiabatic case is due to flame quenching by an excessively high strain rate. The

lower extinction limit is partly associated with the fact that the rate of heat generation by

the chemical reaction decreases as the strain rate (or reactant supply) is decreased, leading

to extinction for any non-zero value of κ; moreover, the total size of the region of hot gas

also increases, which increases the total heat-loss and lowers the flame temperature. The

fact that extinction must occur can be seen from the following simple, order of magnitude

argument.

From the diffusive-reactive balance in the thin reaction zone, of typical (nondimensional)

thickness δr, say, we have from the one-dimensional y-dependent version of equations (5)
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and (6)

ȳF

δ2
r

∼ ȳO

δ2
r

∼ ε−2ω̄ ,

where the bars indicate typical values in the reaction zone. From (7), supposing that θ̄ is

close to unity

ω̄ ∼ β3ȳFȳO .

Since the order of magnitude of the gradients of yF and yO in the reaction zone, ȳF/δr and

ȳO/δr, respectively, are the same as in the mixing layer (whose non-dimensional thickness is

β, given our choice of unit length) we may write

ȳF

δr

∼ ȳO

δr

∼ 1

β
.

From the last three equations, it follows that δr ∼ β−2/3ε2/3, and

ω̄ ∼ β−1/3ε4/3.

Now, using the temperature equation (4), we see that the effective rate of heat generation

(accounting for heat loss) is given, in order of magnitude by ω̄ − κ/β. This quantity becomes

negative in the limit ε → 0, indicating that the temperature decreases, leading to extinction,

whenever κ > 0. It also indicates that extinction must occur at least when κ = O(β2/3ε4/3),

or larger. For the adiabatic case, κ = 0, extinction is impossible as ε → 0, since the net

rate of heat generation remains positive, although it becomes vanishingly small. This is the

classical Burke-Schumann limit.

We now return to Figs. 4 and 6, where it is seen, by comparing, for example, the curves

labelled κ = 0.06, that the more complex dependence of U on ε when κ �= 0 is directly linked

to the behaviour of the planar diffusion flame. This explains, when κ is not too small, both

the monotonic variation of U with ε and the fact that the ε-domain of existence of the flame

fronts consists of two disjoint intervals. For small values of κ, for example κ = 0.04, the

lower extinction limit of the diffusion flame occurs at values of ε which are sufficiently small

to have a negligible effect on the propagation speed. This is because, for sufficiently small
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Figure 7: Regimes of triple-flame propagation, with and without an associated diffusion

flame, in the presence of heat-loss.

values of ε, the leading premixed front is negligibly affected by the properties of the fields

downstream, and hence by the trailing diffusion flame.

Finally, a summary of the main results is presented in Fig. 7 in the space of κ and ε. The

dashed-line characterises the extinction limits of the planar diffusion flame extracted from

the previous figure. The squares correspond to the complete extinction of the triple-flame

structure, and are (partially) extracted from Fig. 5. The triangles describe conditions with

zero propagation speeds. Four combustion regimes can thus be delimited in the κ-ε plane.

(a) In the domain labelled A, to the right of the squares, the triple-flame structure is

extinguished. We note that the extinction in this case is dictated by the extinction of

the diffusion flame in situations where the squares lie on the dashed line. This occurs

for ε larger than a critical value ε∗ which is seen to be close to 0.7. For small values

of the strain rate (more precisely for ε < ε∗), the triple-flame structure survives in

situations where the planar diffusion flame is extinguished.

(b) In the domain labelled B, to the left of the squares and below the lower branch of

the dashed curve, the triple flames have positive speeds and no trailing diffusion-flame

tail (far downstream), as exemplified in the top subfigure of Fig. 3. We could call

these tailless triple flames. More generally, such structures arise in situations where
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the flame behind a flame edge is extinguished but the edge itself continues to survive.

Such structures share some similarities with those encountered in low Lewis number

triple-flame studies (see [18]) where oscillatory propagation arises.

(c) In the domain C, below the triangles and above the domain B, triple flames with

positive speeds and trailing diffusion-flame tails are encountered. These may be referred

to as ignition fronts of the diffusion flame, as in the familiar adiabatic situation.

(d) In the remaining domain D, negatively propagating triple flames (retreating fronts) are

obtained, again as found in the adiabatic situation.

Conclusion

We have presented a numerical description of triple-flame propagation in a strained mixing

layer under nonadiabatic conditions. The results indicate that various combustion regimes

arise, due to the difference in sensitivity to heat-loss of the premixed leading front and

trailing diffusion flame. In particular, a synthesis of the main findings has been given in

terms of the heat-loss intensity and the strain rate. It is worth pointing out that the solutions

presented have been obtained by solving the steady state governing equations. Their stability,

which has not been addressed in this work, will be checked in future studies by solving the

corresponding time-dependent problem.
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