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Flame sheets that arise in non-premixed combustion often have edges. The leading edge of a flame
spreading over a fuel-bed, solid or liquid, is one example. The edge of a hemi-spherical candle
flame in microgravity is another. We construct a one-dimensional model which contains some of
the essential physics of these edge-flames, and use this model to describe stationary solutions and
their stability. The model corresponds to a new class of combustion waves which resemble
deflagrations in some respects yet exhibit important differences. Thus, in a uniform flow. wave-like
solutions are possible with positive, negative or vanishing wave-speeds. depending on an
assignable Damkohler number. At large activation energy, reaction is concentrated primarily in a
thin region (the edge) but it persists, in diminished form, behind the edge. This residuaJ reaction
plays a key role in defining the flame - or edge-temperature which, in turn, controls the dynamics
of the structure. The familiar Lewis-number stability boundaries of deflagrations are present in
modified form and provide tentative explanations of pulsations and cellular structures that have
been observed experimentally.
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rc, T;,IQ)<iJ + Z
wave-number
(Le-I )IB
transverse length scale
fuel Lewis number
transverse mass flux
heat of reaction
gas constant

zfl.
time
temperature'
Burke-Schumann flame temperature
edge speed
non-dimensional edge speed
transverse distance
oxygen mass fraction
equilibrium X when T= T;,
coefficient functions in X-expansion in flame edge
distance parallel to edge
fuel mass fraction
equilibrium Ywhen T= T;,
coefficient functions in Y-expansion in flame edge
distance along flame
fuel mass fraction outside of the flame edge
coefficient functions in Z-expansion
Eq. (36)
Eqs. (61 b), (67b)
stoichiometric coefficients

RT;,IE
TIT;,
coefficient functions in O-expansion in flame edge
heat conduction coefficient
distance in flame-edge
density
s-h
non-dimensional time
Eq.(15)
ooutside of the flame-edge
coefficient functions in <iJ-expansion
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EDGE-FLAMES

'I-' (CpTjQ)(Ii-liw)+(Y- Yw)
n,n reaction rate
( ), expansion coefficients
(), steady state
()w supply values
()' unsteady perturbations
0- values to the left of the flame-edge
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Edge-flames are a common characteristic of non-premixed combustion. For
example, a flame propagating over a fuel-bed will have a leading edge standing
some distance above the bed (Fig. 1). A candle burning in microgravity will
have a hemispherical shape with a well-defined circular edge (Fig. 2), Dietrich,

Oxygen

II

edge

t 1
FIGURE I Flame spreading over a fuel bed.

edge edge

FIGURE 2 Hemi-spherical candle flame under microgravity conditions.
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44 J. BUCKMASTER

Ross, and T'ien (1994). And a turbulent diffusion flame will have a hole ripped
in it where the local scalar dissipation rate is large enough, and this hole will
have an edge.

Edge-flame dynamics is an important subject. Thus in the turbulent context
we would like to know what conditions will cause the hole to expand, what
conditions will cause it to shrink, and whether or not there are meaningful
conditions under which the hole will do neither, Dold et al. (1991), §4.

Systematic experimental studies of edge-flames have not been carried out,
but there have been observations that are relevant to our study, and we shall
refer to three.

Dietrich et al. (1994) have observed candle flames in microgravity which
extinguish after some period due to asphyxiation. Large scale oscillations
occur prior to extinction, with the leading edge moving over the hemi­
spherical surface defined by the steadily-burning flame so that the solid angle
subtended by the flame at the sphere center oscillates between a value close to
2n and a much smaller value. Note that the heavy hydrocarbons that fuel a
candle flame will define a Lewis number that is significantly greater than 1.

Chan and T'ien (1978) have examined flames in a Kirkby-Schmitz appar­
atus, but with the fuel (ethanol and other choices) supplied as vapor from an
evaporating pool. The flame is a circular disk confined within a circular tube
with a gap between the disk edge and the tube surface. Prior to extinction,
oscillations are observed in which the disk expands and shrinks in a symmetric
fashion, so that the distance between the flame edge and the tube wall
oscillates. An ethanol flame will have an effective Lewis number greater than 1.

Chen, Bradley, and Ronney (1992) have examined burner flames in a variety
of atmospheres. When the atmosphere is chosen so that the effective Lewis
number is small, cellular flame structures are observed.

The oscillations observed in the first two studies for Lewis numbers greater
than I, and the cellular structures observed in the third for Lewis numbers less
than I, bring to mind the familiar stability boundaries of deflagrations (e.g.
Buckmaster and Ludford (1983)). But although a significant degree of mixing
occurs at the edges of edge-flames, they are not deflagrations. And, of course,
they are not diffusion flames. They are something in between,a hybrid, and our
purpose here is to construct a simple model which contains some of the
essential characteristics of this hybrid structure. This model admits wave-like
solutions in which the edge advances, retreats, or stands still, and we shall
discuss the stability of these solutions for the special case when the Lewis
number of the oxidizer is I, but that of the fuel differs from 1. The asymptotic
structures valid in the limit of infinite activation energy have features familiar
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EDGE-FLAMES 45

from deflagration studies, but, as we shall see, there are crucial, if subtle,
differences. One consequence is that the familiar closure problem for stability
studies is resolved in a novel fashion that only resembles a NEF strategy
(Near-Equidiffusional Flames, Buckmaster and Ludford (1983), p. 52) for
deflagrations,

One-Dimensional Model of an Edge-Flame

A cartoon which identifies key features of our model is shown in Figure 3. This

looks like a flame in a channel, but it should not be interpreted in such a literal
fashion. It is simply a device to display some important characteristics.
Amongst other things, it does not show any flame-structures at the edge that
can arise from mixing to the left of the edge (see, for example, Kioni et al.
(1993)).

The flame is affected by two boundaries, as is always the case in non­
premixed combustion. One boundary is the oxygen-supply boundary at which
the characteristic value of the oxygen concentration is X w- This would be
located at infinity for the candle flame, at the upper end of the tube for the
Kirkby-Schmitz apparatus.

The second boundary, on the other side of the flame, is the fuel-supply
boundary, where the characteristic value of the fuel concentration is Y",. It
corresponds to the wick for the candle flame, the pool for the Kirby-Schmitz
apparatus.

Oxygensupplyboundary

transversefluxes

edge

L

T
w

x
w

flame

Fuel supplyboundary

z

transverse fluxes

Tw
y

w

FIGURE 3 Cartoon of the edge-flame model.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
e
r
n
 
C
a
l
i
f
o
r
n
i
a
]
 
A
t
:
 
1
7
:
4
4
 
1
8
 
M
a
r
c
h
 
2
0
1
1



46 r BUCKMASTER

The combustion field is assumed to have a charactreistic length scale Lin
the direction perpendicular to the flame. An appropriate choice for L for the
candle flame would be the flame radius, for example.

Each boundary will have a characteristic temperature and, for simplicity, we
shall adopt the single value Tw ' T'; will usually be much smaller than the flame
temperature, so that this not an important point.

Finally, we assume that there is no applied flow over the edge (in the
z-direction) in the adopted frame, but transverse flow is not ruled out. The edge
itself can move in the z-direction.

With this scenario in mind, let us examine typical model equations govern­
ing the combustion field in a Cartesian coordinate system. These are:

(I a)

(1b)

(Ie)

Note that the terms which correspond to transverse fluxes-the 'side­
terms'-have been enclosed in brackets. n is the reaction term, but we are not
ready to define it at this moment.

We now simplify the side-terms by replacing them in the following fashion:

(2a)

(2b)

(2c)

The essential ideal is that the key physical contribution of the side terms is heat
loss to the boundaries (T> T,vl, oxygen gain from the oxygen boundary
(X w > X), and fuel gain from the fuel boundary (Yw > Y).
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EDGE-FLAMES 47

This is a bold move (or crude, depending on ones point of view) but is not
novel. An example which is closer to the spirit of our investigation than any
other is afforded by the work of Weber, Mercer, Gray, and Watt (1995) on a
two-dimensional reactive thermal problem which is reduced to a one-dimen­
sional problem. An earlier example is the one-dimensional heat loss analysis of
Spalding (1957) for a flame in a tube.

There is no a priori assumption that the side terms are small. Although it
might seem that a large heat loss (via the term in C I ) would quench the flame,
this effect is negated by large fluxes of reactants via the Cz, C3 terms.

C"C z, and C3 are constants, but since C, can be scaled out, viz.

(3)

we may, without loss of generality (wlog), take it to be I.

Equilibrium

Equilibrium is defined by the constant solutions of Eqs. (1), (2)
(a/at = a/az = 0). It corresponds to a balance between the side terms and the
reaction. It follows, because of the linear nature of Eqs. (2), that, in equilib­
rium, X and Yare linear functions of T (C,).("f,,-Tw)/Q=CzpDx
(Xw - Xe)fyx = C3 P Dy(Yw - Ye)fyy)· We define T. as the Burke-Schumann
flame temperature for the underlying diffusion-flame system. In other words T.
is the flame temperature of the equilibrium state when the Damkohler number
equals infinity. We then define X a and Ya by

(4)

where X; and Ye are the linear equilibrium functions.
With these definitions, the reactions rate is chosen to be

(5)

the second defining ingredient of our model.
There are several points to be made in connection with the formula (5).Note

that, following the substitutions (2), X and Yare representative or average

values of the concentrations so that (5) is a resolution or the closure problem
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48 J. BUCKMASTER

for the reaction rate. Also, for large activation energy, reaction will only be
significant for values of T close to 7;" and the true concentrations in the
neighborhood of the reaction zone will be small, vanishing in the limit of
infinite Darnkohler number, so that it is natural to associate (X - X a) and
(Y- y,,) with these local concentrations. Clearly related to this is the fact that,
with the choice (5), we guarantee that equilibrium for infinite Darnkohler
number (essentially 8-(0) is characterized by T - 7;,.

Non-Dimensional Equations

Consider a stationary structure that propagates with speed U to the left
(Fig. 3) so that in a frame attached to the edge, a/at- u a/az. We introduce
non-dimensional variables by the formulas

z T pC L - C L Z

s=- 0=- V=-_P-U Q=_P-Q
L' 7;,' .Ie' .Ie'

- C L Z RTB=_P_ e-l/'B 8= __a

A 'E '

so that the governing equations become

dO dZO Q -
V---= -(0-0 )+-Q

ds dsz
W CP 7;, ,

dX dZX -
V-

d
--dZ =Cz(Xw-X)-[Yx]Q,

s s

Note that Yx can be scaled out, viz.

(6a,b,c,d)

(6e,l)

(7a)

(7b)

(7c)

(7d)

(8)

and the factor yy Ley in Eq. (7c)may be similarly eliminated, so that wlog each
factor in square brackets in (7b) and (7c) can be replaced by 1.
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EDGE-FLAMES 49

We have taken the Lewis number for X to be I in this first study, but Ley is
different from 1in anticipation that this will lead to non-trivial stability results.

It turns out that solutions to Eqs. (7) not only determine the edge-speed V
but, in addition, determine the coefficients C z and C 3• This is a global
stoichiometric balance requirement and a global energy balance requirement.
In the present case

C z = 1

so that there is a Schvab-Zeldovich relationship

x :.x =_CpT,,(8_8)
W Q w·

(9)

(10)

As we shall see, when Ley is different from I, so is C3 •

To put our problem in the context of a well-understood mathematical
framework, note that if Ley = I, C3 = I, and the Schvab-Zeldovich relation
(10) is also satisfied by Y, 8, the problem reduces to one for 8 alone, viz.,

d8 d Z8

V---=f(8)
ds ds: '

(11)

For certain choices of ii, the function f has three simple zeros (Fig. 4), and
reaction-diffusion equations of this type are routinely discussed in the mathe­
matics literature (e.g. Grindrod (1991)).

Equilibrium Revisited

The equations of equilibrium are

(12)

so that

(13)
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......1' .

-0.8 -h-~.;..,...,........-i:-.-.-........;.~-..+~.-r.~...;...~.........~
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e
FIGURE 4 The function j'(cf Grindrod (1991), Fig. I. 7.).

by the definition of X Q and Y". When X and Yare eliminated, Eqs. (12) are
equivalent to

(14)

The left side of this equation is sketched in Figure 5 together with the right side
for three different values of the coefficient ~B- '. When B is small there is a
single solution close to Ow' For larger values of Ii there are three solutions, one
close to Ow, one close to 1, and one that has an intermediate value. For even
larger values of Bthere is, again, only one solution, close to I. Then if we plot
variations of equilibrium values of °with the Damkohler number (~B) we
obtain an S-shaped response (Fig. 6).This a familiar characteristic of diffusion
flames.

The description of the equilibrium solutions can be simplified in the
asymptotic limit 0 .....0 (large activation-energy asymptotics). On the top banch
we write

(15)
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EDGE-FLAMES

3 solutions,
intermediate Damk6hler

number

1.0 e

51

FIGURE 5 Equilibrium solutions. The curve is the left side of Eq. 14. the straight Jines are the
right side for different values of ii. .

8equilibrium

ewf-------r

/J

FIGURE 6 The S-shpaed equilibrium response. We are concerned with solutions which
correspond to 1: Z = - 00; 2: z = + 00.

whence

(16a,b)

The left side of Eq. (16a) has a maximum value of 4 e: 2 when 4> = 2 so that
there is no solution if D< e2/4. When D> e2/4 the top branch corresponds to
the smallest of the two possible values of 4>. We are concerned with G(I/E)
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52 J. BUCKMASTER

values of D (then V= 0(1), as we shall see), viz.

I e3 B C T" I
D=-D" D, =-'_P_'--=O(I)

e C3 Q I - 8w

so that

and the top-branch equilibrium corresponds to

On the bottom branch the reaction is exponentially small, so that

(17)

(18)

(19a)

(19b)

(20)

We are concerned with solutions of Eqs. (7) which describe a transition from
the bottom branch of the S-response to the top branch. That is, state (I) in
Figure 6 describes the conditions at S-+ - 00 (Eq. (20)), and state (2) describes
the conditions at s-+ + 00 (Eqs. (19)).

Note that when Eqn. (11)is valid, a single integration yields the formula

V= JU(8)d8
J":., ds (d8/ds)2 ,

(21)

and the sign of Vis defined by the numerator. The function! vanishes on the
S-curve of Figure 6 and is negative between the point I and intersection of the
line 1-2 with the middle branch, positive between the intersection and point 2.

Thus, if point 2 is close to the static quenching point (D = e2/4), the negative
contribution to the integral dominates and VwilJ be negative; if the point I is

close to the static ignition point, the positive contribution dominates and V
will be positive. There is a critical Damkohler number for which V = o.
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EDGE-FLAMES

Stationary Structure in the Limit E->O

53

The stationary structure is sketched in Figure 7 and has many similarities with
the large activation energy structure of the classical deflagration. In the region
s < 0 the temperature 0 is less than 1 and reaction is frozen. In a thin region
located at s~O there is intense reaction balanced by diffusion. In deflagrations
this is called the flame-sheet, but here it is appropriate to call it the flame-edge.
In the region s> 0 there is reaction balancing the side-terms, but the reaction is
smaller by a factor F. than that within the flame-edge. It is natural to associate
the enhanced reaction at the edge with the premixed burning that occurs at the
edge in the underlying two-dimensional structure.

Flame-Edge Analysis

To analyze the flame-edge we seek a solution in the form

(22a)

(22b)

(22c,d)

Thus

(23)

9

Frozen reaction
region

9w-9

9-1- 0(&1£')

Weak reaction
region

Thin zone of
enhanced reaction
- flame edge

s

FIGURE 7 Steady-state temperature distribution.
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54 1. BUCKMASTER

Note that this system makes sense if E
3 Bis 0(1), as anticipated by Eq. (17b).

There are no 0(1) gradients in the region s>O, so that

(24)

Thus

(25a, b)

and

(26)

When Eq. (26) is integrated once we deduce the condition

However, there can be no OrE) perturbations in the region behind the
flame-edge (s> 0),
i.e.

(28)

so that Eq. (27) becomes

(29)

Thecondition (28)follows from the fact that ncan be at most 0(1) in s> 0 ifit is
to be balanced, so that

(30)

and each factor can be no smaller than OrE';;;) because of the condition (19).
The gradient (29) is to be matched with the gradient in the preheat zone, to

which we now turn our attention.
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In this region reaction is negligible so that T and Yare governed by the
equations

We make the choice

Ley=l+d,I=O(I)

(3Ia)

(3Ib)

(32)

(cf. NEFs, Buckmaster and Ludford, loc. cit.] in order to carry out a stability
analysis. And then, as we shall see, it is appropriate to write

(33)

Solutions to Eqs. (31)are sought in the form

(34a)

(34b)

whence

(35a)

(35b)

where

(36)

and, within the flame-edge,

(37)
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z;;- is given by the formula

1. BUCKMASTER

(38)

and we do not describe Z; since it is contained within the discussion of the
next sub-section.

The matching condition (37),when combined with (29), leads to the formula

(39)

which determines the edge-speed V. The left side essentially varies from 0 to 00

as the Darnkohler number ranges over values between the two turning points
of Figure 6. And the right side varies over the same interval as V ranges from
-00 to + 00. For, as V-oo,

and as V..... 00,

jV2+4 2
V+ V +4~-­

V'
(40)

(41)

Both positive and negative edge speeds are possible, depending upon the
Darnkohler number, and there is a stationary edge when

2 Jc;r" 3-
--F. B= I.

(1-0w ) Q
(42)

Calculation of C3.

It was noter earlier that C3 cannot be arbitrarily assigned, but must be
chosen to satisfy global stoichiometry. C 3 , (cf. Eqn. (32)) must be determined
before we can proceed with a stability analysis.

IfQ is eliminated between Eqs. (7a) and (7c) we deduce the equation.

(43)

e
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EDGE-FLAMES

Using the formulas (32), (33) and defining

CpT. o ('P =-( - e )+ Y- Y )Q W W,'

Eq. (43) is equivalent to

57

(44)

Boundary conditions are

(46a)

Thus

where

with

(46b)

(47)

(48)

(49a,b)

and the right side of Eq. (48) is to be prescribed to first order only.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
o
u
t
h
e
r
n
 
C
a
l
i
f
o
r
n
i
a
]
 
A
t
:
 
1
7
:
4
4
 
1
8
 
M
a
r
c
h
 
2
0
1
1



58 J. BUCKMASTER

IfEq. (48) is examined on the scales = 0(1), the right side is discontinuous at
s = 0 but 'P2 and d'P 2/ds are continuous. Thus a unique solution is readily
constructed. But 'P 2 must be constant in sc-O,

(50)

to eliminate O(f.) perturbations of (X - X a) and (Y- 1;, ) (cf. Eq. (30))and in this
way a constraint on C3 , is defined. Thus

and

2lV

Note that with <112 , 'P2 determined, Z; is known.

Unsteady Perturbations-the Stability Analysis

(52)

We now turn to the stability analysis. Here we confront the closure problem
that always arises in large activation energy studies. Thus it is natural, in view

or the steady solution, to examine O(f.';;;l perturbations in the region behind

the flame-edge, corresponding to O(f.';;;) perturbations of the temperature at
the edge itself. Because of the Arrhenius kinetics the corresponding variations

in the edge speed are 0(';;;), so that the perturbations ahead of the edge are

also 0(';;;). But overall connections within the combustion field, global energy

conservation and the like, imply, in general, that 0(';;;) perturbations ahead of

the edge will be associated with 0(';;;) perturbations behind the edge, and a
contradiction is reached. The key to a rational asymptotic treatment is to

identify circumstances for which 0(';;;) perturbations are not generated
behind the edge. Thus the analogous dilemma in deflagrations can be resolved
within the context ofNEFs. Here the resolution comes from the choice (32) (as
with NEFs) together with restrictions on the class of permissible disturbances.
Instability for a restricted class of disturbances is instability, not withstanding.
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The governing equations are
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8Y 8Y 82 y 82 y
(l+Ei)-a +(l+Ei)V-

a
--a2--a2=(1+EC')(Yw-y)-n, (53b)r s s y a

which differ from Eqs. (7) by the addition of time derivatives and diffusion in
the y-direction, measured parallel to the edge.

Suppose the disturbed flame-sheet is located at

s = h(r,y).

We make the coordinate transformation

r,s,y--->r,<1,y, <1=s-h(r,y),

and examine Eqs. (53) in this edge-fixed coordinate system.
We seek a solution to Eqn. (53a) in <1#0 in the form

(54)

(55)

0= <1>,(<1; 0)+ <I>'(<1,y, r;o) = <1>, + Je <1>', (<1, y, r) + oJe <I>~ +.. (56)

where <1>s is the steady solution that we have already described (with the
substitution s---><1), and the other terms are perturbations. At the same time we
write

Thus

and

hey, r; 0)= JeH(y, r).

<1>', = 0 in <1>0

(57)

(58)

O(Je) perturbations are not admissible within the flame edge so that the
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60 J. BUCKMASTER

boundary conditions for Eqs. (59) are

(J--; - OCJ et>', --;0, (J = 0- et>; = o. (60)

We carry out a modal analysis in which the perturbations are proportional
to e).dik

y, and then the solution of Eqs. (59), (60) is

(6la)

where

(6lb)

A perturbation equation valid everywhere can be constructed by eliminat­
ing nbetween Eqs. (53) and perturbing the resulting equation. Then if

(62)

where Z' is the unsteady perturbation in Y, we have

er aJ' a2J' a2 )' sz: ez:
-a + V-a+)'--a2 --a2 +el-a +e1V-a +EC3 Z'r (J (J y r t z

Corresponding to (56) we have

y= Z,+Z' = Z,+0Z', + E0Z~ + ..,

and, consistent with (63), we impose the constraint

(63)

(64a)

(64b)

(65)
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EDGE-FLAMES

Then the O(E-fi) terms of Eq. (63) are

61

(66)

where 'P 2 is the steady-state function defined by Eqs. (50), (51), and could also
be labeled J9 , · J~ vanishes at (J = ± 00 and we wish to calculate its value at
a = 0 for use in the flame-edge analysis.

To this end, we deduce from (66) that in

(67a)

where

(67b)

and in

([<0

where
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62 J. BUCKMASTER

The constants K ± are determined by the requirement that J 3' and its first

derivative are continuous at (J = 0, whence

J~(O) is the value or (C;T,'/Q)<I>~+ Z~ everywhere within the flame-edge
structure.

Perturbations in (J > 0

Behind the flame-edge, deviations from the Burke-Schumann limit are of the

form

(X - X ) = e r;; (C;r._l__ C;r. <1>') +.. (70b)
" VO Q j"fi; Q 3 '

whence the perturbation reaction term is

(71)

This is an 0 (1) term and there is nothing to balance it, so that

It follows that

(72)

at(J=O+ <1>' =-Q-J' (0).
3 2C T 3

p a

(73)
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This is the perturbation flame temperature, a boundary condition to be
imposed on the perturbed flame-edge structure, to which we now turn our
attention.

Perturbed Flame-Edge Structure

Within the flame-edge we seek solutions that depend on ~ = air. in the form

(74)

whence

Since

CpT"0' + Y' =J'(O)Q 3 3 3'
(76)

(specified by Eq. (69)) this defines an equation for e~ which is to be solved
subject to the following boundary conditions:

(matching with Eq. (73));

(77)

~-> - 00 (78)

(matching with Eq. (6Ia)).
It is the solution of this two-point boundary-value problem that determines
the dispersion relation governing the stability of the system.

It is helpful to rescale the problem by writing

o~ = _ 2~ T J~(O) ¢
p a

(79)
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whence

J. BUCKMASTER

We define the functions u, v,f by

_dO" -dOs'f~ d~ j=_ BF.'CpI;, 6
U - d~ , v - d~ 0 [dO,,/d~]2' 2. Q Os, es,

and then the solution of Eq. (80a) is

where K I is an undetermined constant. Note that, as ~ ..... 00,

(81 )

(82)

so that 4> approaches a constant at infinity and it is easy to show that this is
( - I), as required.

Upon differentiating (82) we find,

and when this is equated to (80c) the dispersion relation is derived:

(83)
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EDGE-FLAMES 65

This is a cubic in J V 2 + 4(1e + k2 + I) and determines the gorwth rate ), as a
function of k, V, and (1 - Ow) 1.

STABILITY RESULTS

It is convenient to describe the stability boundaries in the wave-number,
Lewis-number plane. If we assume that Ow is small compared to 1 and that

e = 1'6' then

(85)

The significant values of Ley that we shall identify are then not particularly close
to I (an ingredient of the asymptotic treatment) but similar results for deflagra­
tions suggest that this will not lead to false qualitative conclusions, or false
order-of-magnitude conclusions. The 'robustness' of the NEF formulation for
deflagrations, i.e. its reliability in describing subtle, complex qualitative behav­
iour, is well established.

Figure 8 shows the stability boundaries for Le;«: 1(1<0). Ie vansihes on
each curve, which separates an unstable region on the left from a stable region
on the right. When V--. co (k fixed) the boundary is located at
(I - Ow) 1= - 4 (L ey '" 0.75) and as Vis decreased the boundary moves to the
left. It approaches - coas V--.O, and there is no instability for V,,; O. Byanalogy
with deflagrations we expect that the instability will generate cellular struc­
tures. (Compare the curves in Figure 8 with Figure 5.3 in Buckmaster and
Ludford (1983)).

Figure 9 shows the stability boundaries for Ley> 1 (/>0). In general only
the real part of Ie vanishes on each curve, which separates a stable region on the
left from an unstable region on the right. When V= 0 there is instability at
k = 0 for (1 - Ow) I> 8 (Le y<1.5). Ie vanishes when V= 0, k = 0, (1 -Ow) 1= 8,
but an increase in k introduces oscillations into the neutrally-stable mode. The
frequency vanishes when k = 0 for all of the curves shown in Figure 9 except
for V= 3, for which Irn (Ie) = 3.55. Thus oscillations are a characteristic of the
instability but it seems likely that if V= 0, k = 0 (for example) an infinite-period
Hopf bifurcation analysis would be necessary to calculate the frequency as a
function of the small parameter (1 - Ow) 1-8. Figure 9 should also be com­
pared with Figure 5.3 in Buckmaster and Ludford (1983).
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CONCLUDING REMARKS
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In this exploratory study we have examined a one-dimensional model design­
ed to contain some of the important physics that control edge-flames. It
exhibits some of the characteristics of deflagrations, specifically a preheat zone
containing the mixture, terminated by an intense reaction zone (the flame­
edge). And it exhibits some of the characteristics of diffusion flames in that,
behind the edge, heat generated by residual reaction is removed by a term that
represents losses to side boundaries, and the fuel and oxygen necessary to
sustain the reaction are supplied by appropriate 'side-terms'.

How well such a model can predict the dynamics of edge-flames, and how
robust it is, are questions that can only be answered by further studies,
analytical, numerical, and experimental. But the present results suggest that
cellular structures are possible in advancing edges (but not in stationary or
retreating ones) when the Lewis number is small; and pulsations and travelling
waves are possible for edges travelling with modest speed (positive or negative)
when the Lewis number is large.

Cellular structures and pulsations have been observed experimentally in
edge-flames (see the Introduction), but it must be noted that there are
important differences between the experimental configurations and the model
as presently defined. Strong premixing is a characteristic of the model (X --;X"'
Y--; Yw as z--; - co) but in the candle configuration there is no fuel supply far
ahead of the edge. To account for this it would be necessary, amongst other
things, for Yw to be a function of T, since this provides the evaporative force.

The flame in the Kirkby-Schmitz apparatus and the burner flame are
anchored rather than freely propagating, so that here also the model needs to
be modified if it is to more accurately reflect these physical situations. (An
interesting example of an anchored flame is reported by Pellett, Northam and
Wilson (1991), who observe holes in lean hydrogen/air counter flow flames.
The edge of each hole, symmetrically disposed, maintains a fixed position in
the radial flow).

. Clearly there are a number of problems that can be explored using one­
dimensional models similar to the one described here, and there is promise
that useful physical insights can be gained. The one-dimensional approach
clearly has an advantage over two-dimensional strategies that require formi­
dable numerical calculations (e.g. Kioni et al. 1993)).
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