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Abstract

This review discusses the essential nature of edge-flames, how they are defined, the nature of their structure, how it is that

both positive and negative edge-speeds can arise. Their roots in mixing-layer flames are extensively described, but premixed

edge-flames are also discussed, rooted in the multivalued 1D solutions that can be exhibited by certain kinds of deflagrations.

Cellular instabilities of both non-premixed and premixed edge-flames located in counterflows are examined, and links with

flame-strings and flame-balls are discussed when one or more Lewis numbers are small. And the pulsating instability commonly

associated with large Lewis numbers is examined in a simple model context that has some of the characteristics of

experimentally realizable flames, such as the microgravity candle flame. Lifted edge-flames, both laminar and turbulent are

described, as are some aspects of non-premixed edge-flame holding. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are two one-dimensional (1D) flame structures at

the heart of any discussion of flame physics—the plane

deflagration, and the 1D diffusion flame as realized, for

example, in the counterflow configuration. We study 1D

flames for their universal character, for the physical insights

so obtained, for a vocabulary, all relevant to a large number

of flame configurations. Likewise, edge-flames are idealized

two-dimensional (2D) structures that provide an intellectual

framework of universal significance, and help us to under-

stand flames with edges.

Flames with edges occur in many forms, and several

examples are sketched in Fig. 1. Fig. 1a shows a flame

spreading over a fuel-bed, solid or liquid. Most of the fuel flux

(non-uniform) from the bed is consumed in a diffusion flame

that is nominally 1D (1̃D), but reaction is negligible at the

temperature of the bed surface so that there is a dead space

between the flame and the bed, and the flame has an edge [1].

Fig. 1b shows a candle-flame burning under micro-

gravity conditions. (Candle-burning experiments have been

carried out on both the Space-shuttle and the Mir space

station [2].) In the absence of buoyancy-induced currents,

the flame is roughly hemispherical in shape, with a well-

defined circular edge. This edge is usually stationary, but

prior to extinction it oscillates up and down, an issue that we

shall discuss in some detail.

Fig. 1c is an idealization of a portion of the combustion

field supported by a heterogeneous propellant of the kind

used in rocket motors. Shown is a diffusion flame in which

the fuel (binder) and oxidizer (ammonium perchlorate

decomposition products) react, and this flame has an edge

[3]. Reaction at the edge is stronger than in the trailing 1̃D

diffusion flame, and generates heat that plays a key role in

the regression of the propellant surface [4].

Fig. 1d shows a diffusion flame distorted by turbulence.

Quenching occurs at those times and those places where the

scalar dissipation rate (a stochastic variable) is large enough,

and in this way holes are formed in the flame [5]. Each hole

has an edge, also an edge for the surrounding 1̃D flame.

Fig. 1e shows a sequence of pictures obtained in

experiments reported by Jarosinski and co-authors in 1982

[6]. A sublimit lean methane/air flame (premixed) rises up a

standard inflammability tube, and after a short time begins

to fail. Failure starts with the appearance of a small hole at

the flame tip (frame 13), and the hole expands. Failure is

complete when the flame edge has retreated completely

down the flame skirt.

Fig. 1f shows an axisymmetric diffusion flame supported

on a tube burner, burning under microgravity conditions [7].

There is an edge near the burner rim, similar to that of Fig.

1c, and in addition there is an edge near the tip, since the tip

is open, a consequence perhaps of radiation cooling.

And Fig. 1g shows an experimental configuration studied

in Refs. [8,9] which has some similarities to the flame spread

configuration (Fig. 1a). Air is passed over a plate through

which fuel is injected, and in this way a reactive boundary

layer is formed in which is located a 1̃D diffusion flame with

an edge.

As a final example (but a configuration we do not draw),

the flame supported by a fuel plate in an airflow is discussed

in Ref. [10]. At large Damköhler numbers the flame

envelops the front of the plate (closed tip); but at small

Damköhler numbers the tip is open so that there are well-

defined flame edges at the top and bottom plate surfaces.

In due course we shall describe idealized edge-flames

which are paradigms for these various flames with edges;

classical 1D flames provide some of the building blocks of

these structures. Unbounded edge-flames exhibit wave-like

behavior (Fig. 1a and b), as do 1D deflagrations, and the

concept of edge-speed is as meaningful as the concept of

flame-speed. (And for anchored edge-flames (Fig. 1c), the

concept of edge-speed is as problematic as the concept of

flame-speed is for anchored deflagrations). There are connec-

tions then between edge-flames and 1D flames, and because of

this we shall start with a brief discussion of the latter.

2. Deflagrations and the concept of flame-speed

There is much wishful thinking in the discussion of

flame-speed in the literature (and this author has thought his

share), justification for a few remarks about this old subject.

It is sufficient for our purposes to examine the concept in
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the context of the equations

rCp

›T

›t
þ q·7T

� �
¼ l72T þ QBY e2E=RT

;

r
›Y

›t
þ q·7Y

� �
¼ rD72Y 2 BY e2E=RT

;

ð1Þ

where q is either an assigned solenoidal velocity field (as for

the constant-density model) or is to be simultaneously

determined from the Navier–Stokes equations. We shall

discuss the solutions of Eqs. (1) in the limit E !1:

The standard approach is to restrict attention to the class

of problems for which the flame-temperature (the tempera-

ture at the vanishingly thin reaction zone or flame-sheet)

varies both in time and space by only asymptotically small

amounts, and the temperature gradient on the burnt-gas side

of the sheet is asymptotically small. Reaction is then zero in

the burnt gas because Y ; 0 there, and not because of

reaction freezing. On the scale of the preheat zone the sheet

is vanishingly thin, and its normal, directed towards the

burnt gas, is to first order well defined. If n is the distance

measured along this normal, the flame-sheet structure is

defined by a diffusion-reaction balance, viz.

0 ¼ l
›2T

›n2
þ QBY e2E=RT

;

0 ¼ rD
›2Y

›n2
2 BY e2E=RT

:

ð2Þ

In the usual way, we seek a solution by writing

T ¼ Tp þ 1tðhÞ; Y ¼ 1yðhÞ; n ¼ 1h;

1 ¼
RTp

E
! 0;

ð3Þ

whence

2
l

Q

d2t

dh2
¼ rD

d2y

dh2
¼ 1

2 e21=1By et=Tp : ð4Þ

Here Tp is the flame-temperature, the temperature at h!1

where, in addition, Y ! 0: Therefore, on integrating Eq. (4)

twice,

l

Q
t þ rDy ¼ 0: ð5Þ

The equation for t defined by Eqs. (4) and (5) can be

integrated once to yield

dt

dh

� �2

¼
212 e21=1B

rD
½Tpt et=Tp 2 T2

p et=Tp þ T2
p � ð6Þ

(dt=dh ¼ 0 when t ¼ 0; h!1) whence the Y-gradient on

the upstream side of the sheet (h!21; t !21) is

2rD
dY

dn2
¼

l

Q

ffiffiffiffiffiffi
2B

rD

s
T2
pR

E
e2E=2RTp : ð7Þ

In the context of the model described by Eqs. (1), this

familiar result is the central one from which the essential

behavior of deflagrations flows. Fundamentally it says that

the flux of the reactant Y to the flame-sheet, all of which is

consumed there, is an Arrhenius function of the flame-

temperature. Thus the flame-temperature and the reactant

flux are measures of the strength of the flame, and these

measures arise in a natural and direct fashion without

reference to flame-speed.

The flame-sheet must position itself or move so that

condition (7) is satisfied. For a plane steady unbounded

deflagration (›=›t ¼ 0; rq·7! Mð›=›nÞ) conservation of the

flux of Y within the preheat zone means that

2rD
›Y

›n2
¼ MY1 ð8Þ

where Y1 is a supply value, and this determines the flame-

speed M=r1 in terms of the flame-temperature. When the

Nomenclature

B pre-exponential constant in reaction rate

D, Di mass diffusion coefficient

D Damköhler number

D0 value of D for which the edge-speed is zero

D1 13Dð1 2 uwÞ
21

De 1D extinction value of D

Di 1D ignition value of D

E activation energy

L characteristic geometric length

n coordinate normal to flame-sheet

Q heat of reaction

R universal gas constant

So adiabatic flame-speed

T temperature

Tad adiabatic flame-temperature

TGs
Burke–Schumann flame temperature

U dimensional edge- or wave-speed

V dimensionless edge- or wave-speed

x coordinate perpendicular to edge-flame

travel

X mass fraction of oxidizer

Y mass fraction of fuel

z coordinate parallel to edge-flame travel

(·)w wall values

(·)p flame conditions

(·)f fresh mixture supply

(·)1 supply conditions

a rate of strain

aX;Y stoichiometric coefficients

1 inverse activation energy

f equivalence ratio, temperature perturbation

F Schvab–Zeldovich variable

gm Markstein number

r density

u temperature
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Fig. 1. (a) Flame spreading over a fuel-bed. (b) Candle flame burning under microgravity conditions. (c) A diffusion flame with an edge

supported by fluxes from a heterogeneous propellant. (d) A wrinkled torn flame in a turbulent flow. (e) A sequence of pictures of a sublimit

methane/air flame traveling up a standard inflammability tube, from Ref. [6], with permission. (f) An axisymmetric diffusion flame under

microgravity conditions [7]. (g) A diffusion flame sitting on a plate through which fuel is injected [8,9].
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latter is determined from energy considerations, the flame-

speed is determined.

More generally, flame-speed is well defined in the

hydrodynamic limit PeL !1; where PeL ¼ MCpL=l is

the Peclet number based on L, a length characteristic of the

flame geometry.

Difficulties arise as soon as one moves away from the limit.

Thus consider Markstein’s famous flame-speed correction,

proposed in the context of weakly stretched flames, and

addressed by Markstein solely in the context of the flame as a

hydrodynamic discontinuity [11]. Suppose, for example, the

flame is placed in a non-uniform velocity field which is locally

characterized by a velocity gradient a. Then Markstein

proposed that the increment in flame-speed DS generated

by the stretch associated with a can be written in the form

DS

So

¼ gm

ad

So

; i:e: DS ¼ gmad; d ¼
l

MoCp

; ð9Þ

where So ¼ Mo=r1 is the unperturbed (adiabatic) flame-

speed, gm is a constant (Markstein number) controlled by

the intrinsic properties of the mixture, such as the Lewis

number, and d is a measure of the thickness of the

unperturbed flame. However, treating a structure of thick-

ness d as a discontinuity introduces uncertainty in the flame

position of order OðdÞ; and a corresponding uncertainty in

the value of the gas velocity on the cold side of the flame of

order OðadÞ; precisely the magnitude of Markstein’s

correction to the flame-speed! Resolution of this difficulty,

and a rational justification of Markstein’s strategy can only

come from a more precise specification of the flame

location, and a suitable and convenient choice is the

flame-sheet location. Then, for a weakly stretched flame,

the preheat zone is approximately 1D, and meaningful well-

defined corrections to the flame-speed can be calculated [12,

13]. This is possible because the loss or gain of Y within the

preheat zone which modifies Eq. (8) can be expressed in

terms of local well-defined combustion-field ingredients.

Once one moves firmly away from the 1D configuration,

however, the significance of flame-speed is, in general, lost.

Consider, for example, the counterflow of fresh mixture and

inert, the latter supplied at a temperature equal to the

adiabatic flame-temperature

Tad ¼ T1 þ
Q

Cp

Y1: ð10Þ

The gas velocity is

q ¼ að2x; yÞ ðr ¼ constantÞ: ð11Þ

If the Lewis number Le ð¼ l=rDCpÞ is equal to 1, T and Y

are related via the Schwab–Zeldovich relation

T þ
Q

Cp

Y ¼ Tad; ð12Þ

whence

Tp ¼ Tad ð13Þ

and the flame-strength (reactant consumption rate) is fixed,

independently of a. The flame-sheet positions itself at a

station xp so that the flux condition (7) is satisfied ðn ¼ xÞ;

and the only way to construct a speed is via the product axp
(the gas speed at the flame-sheet) but this has no physical

importance, is a measure only of itself.

This is the general situation for unsteady flames, multi-

dimensional flames, and flames interacting with boundaries.

Physical discussions of these situations which appeal to the

concept of flame-speed, appeal to an illusion. A corollary of

this is that attempts to construct general theories relating

flame-speed in a non-linear fashion to stretch, curvature, or

other measures of the environment, are futile.

Consider, for example, the classical discussion of flame-

holding at a burner rim [14]. What is sketched in Fig. 2 is the

flame-sheet whose distance from the rim is measured on the

scale of the preheat zone, and which is assumed to carry, as

an intrinsic property, a speed, a speed that varies according

to the heat loss to the rim because of a well-defined

temperature dependence. Two equilibrium positions are

defined (A, B) where B, on the basis of a quasi-steady

argument (flame displacement), is stable. But the flame-

speed in this discussion, if it exists, must originate in Eq. (7),

Fig. 2. A deflagration anchored to a burner rim [14], and variations in gas-speed and flame-speed from which stability conclusions are drawn.

The left panel shows a streamline along which the gas speed increases, as shown in the right panel. The flame-speed increases with distance from

the rim as the cooling effect decreases, asymptoting to the adiabatic flame-speed.
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yet the connection has not been made. That the conclusion is

correct, that stability is predicted, is unconvincing, for the

argument has but two outcomes and it takes little ingenuity

in situations such as this to ensure the correct one.

Our conclusion then is that flame-speed is only a relevant

concept in a narrow context, that of the unbounded flat

flame, close approximations thereto, or certain special

cases.1,2 Elsewhere, it is 21st century phlogiston.

The edge-speeds that we shall discuss in later sections

are also only meaningful in a narrow context, and an

‘explanation’ of edge-flame holding is as elusive as the

holding of Fig. 2.

3. One-dimensional diffusion flames

Consider the counterflow of fuel and oxidizer, modeled

by the equations

2rax
›

›x
ðX;Y ;CpTÞ

¼
›2

›x2
ðrDXX; rDY Y ; lTÞ

þ ð2aX ;2aY ;QÞBXY e2E=RT
;

x !21 : X ! X1; Y ! 0; T ! T1;

x !þ1 : X ! 0; Y ! Y1; T ! T1:

ð14Þ

Solutions to this system are characterized by an S-shaped

response of maximum temperature to Damköhler number

ð, B=aÞ; Fig. 3, a result of significance in edge-flame

studies.

In the limit D !1 (the Burke–Schumann limit), both X

and Y vanish at a thin flame-sheet. Moreover, for typical

values of the activation energy, the sheet remains thin and

these conditions remain satisfied along the entire upper

branch of Fig. 3. Thus, at the sheet,

X ¼ 0; ð15aÞ

Y ¼ 0; ð15bÞ

rDY

aY

›Y

›x

� �
2

rDX

aX

›X

›x

� �
¼ 0; ð15cÞ

rDX

aX

›X

›x

� �
þ

l

Q

›T

›x

� �
¼ 0; ð15dÞ

(the square brackets signify jumps) where Eq. (15c) is a

statement that the reactant fluxes to the sheet must be in

stoichiometric proportion, and Eq. (15d) is a statement of

energy conservation. In most configurations, Eqs. (15a)–(15c)

fix the flame position, and Eq. (15d) determines the flame-

temperature Tp ¼ Tbs; the Burke–Schumann flame-tempera-

ture. The flame-sheet structure controls the Oð1Þ short-fall of

Tp from Tbs when D is reduced to finite values, with extinction

occurring (at D ¼ De) when this short-fall is too large [16].

Although a flame-speed could be defined (by the gas-speed

normal to the flame-sheet) it is not a significant measure of

anything, is no more meaningful than the flame-speed of a

deflagration in a strong counterflow.

4. Edge-flames

We shall now see how an edge-flame, a 2D structure, can

be constructed from the 1D response of Fig. 3. For a finite

interval (De, Di) there are three equilibrium 1D solutions, of

which {1}, on the weak-burning branch, and {2}, on the

strong-burning branch, are stable. These solutions

ðX{1};X{2}; Y{1};…Þ can be used as boundary-conditions

for 2D unsteady generalizations of Eq. (14), viz.

r
›

›t
2 rax

›

›x

� �
ðX; Y ;CpTÞ

¼
›2

›x2
þ

›2

›z2

 !
ðrDXX; rDY Y ; lTÞ

þ ð2aX ;2aY ;QÞBXY e2E=RT
;

x !21 : X ! X1; Y ! 0; T ! T1;

x !þ1 : X ! 0; Y ! Y1; T ! T1:

ð16Þ

Fig. 3. Variations of maximum temperature with Damköhler

number for a diffusion flame in a straining flow.

1 Thus for a steady 1D flame attached to a burner at whose face

flux conditions are applied, viz. MY 2 rD ›Y=›n ¼ MY1; we have

MY1 ¼ 2rDð›Y =›nÞ2; as for the unbounded flame.
2 Thus Faeth and co-workers, in a series of papers (Ref. [15] and

references therein) have measured flame-speeds for outwardly

propagating spherical flames of various types by examining flame-

sheet trajectories (identified using shadowgraph techniques) and

have successfully fitted the results to the non-linear flame-

speed/flame-stretch equation So=S ¼ 1 2 gmKa where Ka is the

Karlovitz number (the non-dimensional stretch) and gm is a constant

Markstein number. This formula can be approximated by the

classical linear speed/stretch relation (e.g. Eq. (9) when Ka is small.
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Specifically, we require (Fig. 4),

ðX; Y ;TÞ! ðX{1}; Y{1}; T{1}Þ as z !21;

ðX; Y ;TÞ! ðX{2}; Y{2}; T{2}Þ as z !þ1:
ð17Þ

It is typically the case that the solution {1} is weak,

essentially quenched, and so, because of the strong

temperature dependence of the Arrhenius factor, the 2D

flame so described has an edge (at z , zt; say) and for z , zt

reaction is negligible, whereas for z . zt it is vigorous.

Numerical solution of the system (16) and (17) lead to

structures which, after initial transients, propagate at well-

defined speeds and have unchanging shape. It is this

property which gives edge-flames their fundamental status,

as fundamental as the classical 1D structures.

The speeds may be positive, corresponding to an

ignition front advancing into the non-reacting gas (cf.

Fig. 1a), or negative, corresponding to a failure wave, a

retreat of the edge (cf. Fig. 1e), and the edge structures

are different in the two cases, Fig. 5. An ignition front

is characterized by significant premixing which, together

with the trailing diffusion flame, defines a three-

branched structure, a tribrachial flame, Fig. 5a. The

reaction rate displays a strong maximum. On the other

hand, a failure wave is essentially a 2D diffusion flame,

Fig. 4. Schematic of an edge-flame in which the flame-sheet in a

counterflow occupies the region x ¼ xp; z . zt:

Fig. 5. Reaction-rate contours for advancing (top left panel), stationary (top right panel), and retreating (bottom panel) edge-flames, from Ref.

[60], with permission.
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with no rate maximum in the neighborhood of the edge,

Fig. 5c.

Figures similar to those of Fig. 5 were first reported in

Ref. [17]. Other calculations have been carried out using

detailed chemical models and a full accounting of the

Navier–Stokes equations [18,19].

4.1. Understanding edge-speeds

A striking difference between edge-flames and deflagra-

tions is that whereas the latter only have positive

propagation speeds, the former can have propagation speeds

of either sign. Insight into these properties can be obtained

by an examination of the equation

›u

›t
¼

›2u

›z2
þ f ðu;DÞ; ð18Þ

where f is a reaction term that depends on a parameter D. We

seek solutions corresponding to a traveling wave, i.e.

u ¼ uðz þ VtÞ ð19Þ

whence

V
du

dz
¼

d2u

dz2
þ f ðu;DÞ; ð20Þ

to be solved subject to the boundary conditions

u! u1 as z !21; u! u2 as z !þ1: ð21Þ

Interesting and important questions of existence and

uniqueness arise in the discussion of the system (20) and

(21), but these do not concern us here, and we shall assume

that f has the properties necessary for our statements to be

meaningful. Clearly f must vanish at u ¼ u1 and u ¼ u2:

If Eq. (20) is multiplied by du=dz and integrated over the

entire real line, we derive the formula

V
ðþ1

21

du

dz

� �2

dz ¼
ðu2

u1

f ðu;DÞdu; ð22Þ

and this can tell us something about the sign of V. There are

two cases that are of interest to us:

Case I: f $ 0 (Fig. 6). Then the r.h.s. of Eq. (22) is

positive, so that V . 0: This is relevant to deflagrations and

indeed, when the Lewis number equals 1, the system (1)

yields the structure equation

rCpV
dT

dz
¼ l

d2T

dz2
þ BCpðTad 2 TÞe2E=RT HðT 2 TcÞ; ð23Þ

which has the form (20). (Here the cut-off function H is

introduced to take care of the cold-boundary difficulty).

Case II: f has the form sketched in Fig. 7. Typically we

are interested in examples where the level surface f ¼ 0

defines an S-shaped curve in the u–D plane, Fig. 8, so that

the graph Fig. 7 is correct in the interval De , D , Di: The

variations in Fig. 7 are then the variations along the line

{1}–{2} in Fig. 8, one that joins the lower branch to the

upper branch. Clearly, if D is close to De the negative

contribution of f to the integral in Eq. (22) dominates, and V

is negative. On the other hand, if D is close to Di; the

positive contribution dominates, and V is positive. There is a

unique value of D for which V ¼ 0:

Although there are no 1D examples in combustion of this

nature, the system (20) and (21) for this case is a 1D analog

of edge-flames. Clear links can be forged with some

elementary modeling.

Fig. 6. The source term for a deflagration, cf. Eq. (20).

Fig. 7. The source term for a system displaying bistable equilibrium,

cf. Eq. (20).

Fig. 8. The level surface f ðu;DÞ ¼ 0 for a system displaying bistable

equilibrium. Along the path from {1} to {2}, D fixed, f varies as in

Fig. 7.
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5. A one-dimensional model of an edge-flame

The temperature equation

V
du

ds
2

d2u

ds2
¼ ðuw 2 uÞ þ Dð1 2 uÞ2 exp

1

1
1 2

1

u

� �
ð24Þ

is an example of Eq. (20) in which f (the r.h.s.) has the

properties of Figs. 7 and 8. The second term in f is a true

kinetics term with an Arrhenius factor e21=1u; and a factor

ð1 2 uÞ2 originating in a reactant concentration dependence.

The first term, ðuw 2 uÞ; accounts for transport to the side

(the x-direction in Fig. 4), transport which carries heat from

the flame to the reactant supply boundaries, and carries

reactants from those boundaries to the flame. One-dimen-

sional equations of this type have been used in the

discussion of fire-spread problems [20], but without the

factor ð1 2 uÞ2 or anything similar, a factor which simulates

diffusion-limiting in the limit D !1: In this section we

shall say something about a modeling strategy that leads to

Eq. (24). Complete details can be found in Ref. [21].

We start with equations that describe an unsteady

combustion field in the x–z plane (cf. Eq. (16))

r
›

›t
ðCpT ;X; YÞ2

›2

›z2
ðlT ; rDXX; rDY YÞ

¼ ðST ; SX ; SY Þ þ ðQVT ;2VX ;2VY Þ: ð25Þ

Here ST ; SX and SY are ‘side-terms’, terms that represent

convective or diffusive transport in the x-direction (Fig. 4)

and VT ; VX and VY are reaction terms that we shall discuss

later.

Underlying Eq. (25) is a 1D system obtained by setting

the t- and z-derivatives equal to zero, with solutions that are

characterized by an S-shaped response such as that of Fig. 3.

Eqs. (25) then describe an evolution in z, unsteady, between

1D solutions characterized by the points {1} and {2}. The

details of these solutions (maximum temperature, etc.) are

fixed by the choice of the Damköhler number.

In order to reduce Eq. (25) to 1D form, it is necessary to

model the side terms in some fashion. Since the combustion

field loses heat to the boundaries, we replace ST :

ST !2
lðTw 2 TÞ

L2
ð26Þ

where L is a length scale characterizing variations in the

x-direction (e.g. L ¼
ffiffiffiffiffiffiffiffiffiffi
l=raCp

p
for the counterflow problem,

Eq. (16)), and Tw is a characteristic or heat-sink tempera-

ture. Similar replacements are made for SX and SY so that

now Eqs. (25) describes the evolution of averaged

quantities, although the precise nature of this average is

not defined. This type of bulk modeling is common in

engineering applications.

It is also necessary to model the reaction terms,

providing some representation of the average over the

x-direction. A simple choice—perhaps the simplest—that

preserves the functional form of the point-wise description

as much as possible, is

VT ¼ DðX 2 XaÞðY 2 YaÞe
2E=RT ð27Þ

with similar representations for VX and VY ; where Xa and Ya

are constants. One-dimensional equilibrium is defined by

setting the r.h.s. of Eqs. (25) equal to zero, and the fast-

chemistry approximation to this equilibrium (D ! 1) is

characterized by X ¼ Xa; Y ¼ Ya; an averaged represen-

tation of the Burke–Schumann limit.

Certain subtleties need to be addressed in this procedure,

which we will not describe here, but Eq. (24) emerges in a

plausible fashion when LeX ¼ LeY ¼ 1 and Schvab–

Zeldovich relations can be invoked. It is non-dimensional,

and its variables are connected to those of Eqs. (25) by the

formulas:

›

›t
¼ U

›

›z
; s ¼

z

L
; V ¼

rCpLU

l
;

u/ T ; 1/
1

E
; D / L2

D:

ð28Þ

5.1. Equilibrium

Equilibrium is defined by

u2 uw ¼ Dð1 2 uÞ2 exp
1

1
1 2

1

u

� �
¼ V ð29Þ

and this defines an S-shaped response in the u–D plane. On

the top branch, when 1 is small, u is close to 1 and we write

u ¼ 1 þ 1f; 1! 0;

D̂ ¼ 12Dð1 2 uwÞ
21 ¼ Oð1Þ;

ð30Þ

whence

f2 ef ¼ D̂21
; ð31aÞ

V ¼ 1 2 uw ¼ Oð1Þ: ð31bÞ

Extinction occurs when f ¼ 22; D̂ ¼ 1
4

e2; and there is no

strong-burning solution if D̂ , 1
4

e2: If one proceeds down

the S-shaped response, f vanishes at D̂ ¼ 1; decreases as

the top branch is traversed, reaches the value (22) at the

turning point, and continues to decrease down the middle

branch.

An important role is played by Oð1=1Þ values of D̂; viz.

D̂ ¼ 121D1; D1 ¼ Oð1Þ; ð32Þ

whence, on the top branch,

u ¼ 1 2
1
ffiffi
1

pffiffiffiffi
D1

p þ · · · ð33Þ

D1 is a Damköhler number that controls the equilibrium

state. In particular it controls the post-edge temperature via

Eq. (33) and therefore the ‘reactant leakage’.
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5.2. Steady asymptotic solution of an unbounded edge-

flame, D ¼ O(1/13)

The asymptotic structure in the limit 1! 0; D1 ¼ Oð1Þ

ðD ¼ Oð1=13ÞÞ; is similar in many respects to that of a

deflagration. If the edge is located at s ¼ 0; then in s , 0

reaction is frozen, because of the low temperature, and

across the edge, or thin reaction zone, there is a jump in the

first derivative of u. Behind the edge, u ¼ 1 to first order, cf.

Eq. (33). The cold equilibrium at s ¼ 21; defined by a

point on the lower branch of the S-shaped response, is u ¼

uw with error that is exponentially small in 1; it is commonly

the case in edge-flame configurations that reaction is

negligible on the cold side of the edge, that solution {1} is

essentially the frozen solution.

In the preheat zone ðs , 0Þ;

u ¼ uw þ ð1 2 uwÞe
ns
; n ¼ 1

2
½V þ

ffiffiffiffiffiffiffiffiffi
V2 þ 4

p
�: ð34Þ

Within the reaction zone, of thickness 1,

u ¼ 1 þ 1f2ðjÞ þ · · ·; s ¼ 1j ð35Þ

where

f2 ! 0 as j!1 ð36Þ

to match with the equilibrium solution (33). In the usual way

(see the earlier discussion of the deflagration structure) the

gradient as j!21 can be determined and matched with

the gradient defined by Eq. (34). Indeed,

du

ds2
¼ 2

ffiffiffiffiffi
13D

p
; ð37Þ

whence

V þ
ffiffiffiffiffiffiffiffiffi
V2 þ 4

p
¼ 2C ;

4
ffiffiffiffi
D1

pffiffiffiffiffiffiffiffiffi
1 2 uw

p ; ð38Þ

i.e.

V ¼ C2
1

C
ð39Þ

which defines a positive or negative speed accordingly as

C . 1 or C , 1:

In the infinite Damköhler number limit C!1;

V !C ð40Þ

and it is natural to identify this with the adiabatic flame-

speed for a deflagration in a stoichiometric mixture. (That an

edge-flame cannot exist in the limit since it puts D beyond

the ignition value Di is of no concern, since the ignition

value is exponentially large in 1 ). For the counterflow

problem, when account is taken of the dependence of V and

C on the reference length L / 1=
ffiffi
a

p
; Eq. (39) is equivalent

to U=So ¼ 1 2 a=a0; where a0 is defined by C ¼ 1:

The variations in the reaction rate within the edge-flame

structure are consistent with numerical solutions of the 2D

problem for non-negative edge-speeds. Ahead of the edge,

reaction is frozen (exponentially small), within an Oð1Þ

neighborhood of the edge it is Oð1=1Þ ð, d2u=ds2Þ; and in the

post-edge equilibrium region it is O(1). This structure is

sketched in Fig. 9.

Finally, before leaving this section, it is useful to

note the important distinctions between the present

solution and that of the classical deflagration. There is

no cold-boundary difficulty, since the state at s !21 is

defined by an equilibrium point fixed by the Damköhler

number. Similarly, the flame-temperature, a character-

istic of the post-edge equilibrium state, is defined by the

Damköhler number. Mixing occurs ahead of the edge,

but to say there is a mixture at s !21 is quite

different from saying that there is an equilibrium point

characterized by substantial reactant leakage through the

reaction zone. The former will support a deflagration

(an ignition wave) if ignited, whereas the latter may or

may not, depending on the Damköhler number. Here the

side terms play a crucial role. For a deflagration (no

side terms) the preheat zone thickness ranges from 0 to

1 as the propagation speed varies from 1 to 0, but for

the edge-flame the corresponding thickness (n 21) spans

the same range for speeds varying from 1 to 21.

Decrease the Damköhler number (and so increase the

thickness) in a deflagration and the speed will decrease,

but always be positive. Decrease the Damköhler number

in an edge-flame and the speed will become negative.

For an edge-flame there is a watershed value of the

Damköhler number ðC ¼ 1Þ for which the edge-speed is

zero. At larger Damköhler numbers ðC . 1Þ the hot

post-edge flame is an ignition source for the cold

Fig. 9. Temperature variations and reaction-rate variations through

the flame-edge, 1D model, D ¼ Oð1=13Þ: (e.s.t.: exponentially small

terms).
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mixture ahead of the edge; at smaller Damköhler

numbers ðC , 1Þ the cold ante-edge mixture quenches

the post-edge flame.3

5.3. Steady asymptotic solution of an unbounded edge-

flame, D ¼ O(1/12)

The discussion of Section 5.2 is concerned with Oð1=1Þ

values of D̂; although edge-flames can exist for O(1) values,

and a different asymptotic treatment is necessary in this case.

We seek a solution of Eq. (24) for which D12 ¼ Oð1Þ: It

then turns out that V ¼ Oð1=
ffiffi
1

p
Þ; V , 0: Since C is Oð

ffiffi
1

p
Þ;

it follows that U=So ¼ V=C ¼ Oð1=1Þ: If, as before, the edge

is located at s ¼ 0; reaction is negligible in s , 0 and,

because lV l is large, diffusion can also be neglected. We

write

s ¼ 2Vs ¼ Oð1=
ffiffi
1

p
Þ ð41Þ

whence

du

ds
2 ðu2 uwÞ ¼ 0; s , 0 ð42Þ

to first order, with solution

u ¼ uw þ ð1 2 uwÞe
s
: ð43Þ

The edge itself is described in terms of the variables

s ¼ 1j; u ¼ 1 þ 1fðjÞ; ðs ¼ Oð
ffiffi
1

p
ÞÞ ð44Þ

whence

2
df

dj
2

1

1V2

d2f

dj2
¼ ð1 2 uwÞ½D̂f2 ef 2 1�: ð45Þ

The boundary conditions are

j!1 : f! f1 where D̂f2
1 ef1 ¼ 1 ð46Þ

cf. Eq. (31a),

j!21 :
df

dj
! ð1 2 uwÞ ð47Þ

to match with the gradient of Eq. (43).

If we write

df

dj
¼ ð1 2 uwÞPðfÞ ð48Þ

the problem reduces to a first order boundary-value problem

2
ð1 2 uwÞ

1V2
P

dP

df
¼ P þ

f2

f2
1

ef2f1 2 1;

Pðf1Þ ¼ 0; Pð21Þ ¼ 1

ð49Þ

from which the eigenvalue 1V2=ð1 2 uwÞ can be determined;

we are concerned with the range 22 , f1 , 0; correspond-

ing to the upper branch of the equilibrium solution.

Numerical solution of Eq. (49) determines the eigen-

value as a function of f1; and therefore D̂; variations of

which are shown in Fig. 10. These solutions are not accurate

for realistic values of 1 (e.g. 1 ¼ 1=16), but capture the

fundamental behavior and physics. These rapidly retreating

failure waves are much thicker than the ignition fronts, and

the reaction rate within the edge and behind it is O(1), cf.

Fig. 5c. The structure is sketched in Fig. 11.

Fig. 10. Variations in the speed of a failure wave with Damköhler

number, 1D model, D ¼ Oð1=12Þ:

Fig. 11. Temperature variations and reaction-rate variations through

the edge-flame, 1D model, D ¼ Oð1=12Þ:

3 This ignition/quenching dichotomy occurs in classical ignition

studies in which a ball of hot burnt gas is placed in an atmosphere of

cold fresh mixture: whether the ball ignites the mixture or the

mixture quenches the reaction initiated at the ball boundary,

depends on the size of the ball. For this problem the effective

Damköhler number is proportional to the square of the ball

diameter.
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Our discussion here is valid when both Lewis numbers

are equal to 1. Although attempts have been made to relax

this restriction, a satisfactorily robust model has yet to be

developed [21,22].

6. Two-dimensional descriptions of edge-flames

The 1D model of edge-flames is of conceptual value,

linking the subject to the classical reaction-diffusion

equation (18) for functions f exhibiting bistable equilibrium,

e.g. [23], and it captures some of the essential physics, but it

is a predictive tool of uncertain reliability and cannot

substitute for a 2D treatment. The asymptotics in this case

was pioneered by Dold, and we shall sketch some of the

results that he and his colleagues have obtained.

It is a characteristic of edge-flames of the kind we have

discussed so far that significant mixing of reactants occurs

on the low temperature side of the edge. Thus, with reaction

neglected, Eqs. (14) have solutions (when DX ¼ DY ¼ D)

X ¼
1

2
X1 1 2 erf x

ffiffiffiffiffiffi
a

2D

r� �� �
;

Y ¼
1

2
Y1 1 þ erf x

ffiffiffiffiffiffi
a

2D

r� �� � ð50Þ

and the corresponding mixture varies (with x ) from fuel lean

to fuel rich. Edge-flames are thus connected to the problem

of propagation in a stratified mixture, an early experimental

report of which can be found in Ref. [24]. The first analysis,

for weak stratification, is due to Dold [25], although we shall

follow here the argument presented in Ref. [26].

Imagine a deflagration sustained by a mixture moving in

the z-direction in which the fuel and oxidizer concentrations

vary linearly with x, Fig. 12. Suppose the mixture is in

stoichiometric proportion on the z-axis, fuel-lean in x , 0;

and fuel-rich in x . 0: Then the burnt gas will contain hot

unburnt oxidizer in x , 0; hot unburnt fuel in x . 0; and

these excess reactants will diffuse towards each other to

generate a diffusion flame that trails the two branches of the

premixed flame. We shall call this a tribrachial flame (Fig.

5a), a name first used in 1988 [27], with firm roots in the

English language. We use the kinetics of Eqs. (14), a two-

component model, with aX ¼ aY ¼ 1; and both Lewis

numbers equal to 1.

Consider a plane deflagration with supply conditions

T ! Tf ; X ! Xf ¼ X0 þ 1X1;

Y ! Yf ¼ Y0 þ 1Y1 as z !21

ð51Þ

where

X0 ¼ Y0 ð52Þ

and

1

1
¼

E

RTad0

q 1; ð53Þ

where

Tad0
¼ Tf þ

QX0

Cp

¼ Tf þ
QY0

Cp

ð54Þ

is the adiabatic flame-temperature at stoichiometry when

X1 ¼ Y1 ¼ 0: Then the standard procedure (cf. our earlier

discussion of the deflagration for a one-component model)

leads to the following expression for the mass flux:

M ¼ M0 exp
X1Q

2CpTad0

" #
1 þ

ðY1 2 X1ÞQ

2CpTad0

" #1=2

;

Y1 $ X1;

M ¼ M0 exp
Y1Q

2CpTad0

" #
1 þ

ðX1 2 Y1ÞQ

2CpTad0

" #1=2

;

X1 $ Y1:

ð55Þ

Here, M0 is the value of M when X1 ¼ Y1 ¼ 0:

Now suppose that

X1 ¼ 2b
x

d
; Y1 ¼ b

x

d
ð56Þ

where

d ¼
l

M0Cp

; ð57Þ

the nominal thickness of the undisturbed flame, and b is an

assigned parameter. Then, when b is small, Eqs. (55) yield

M ¼ M0 1 2
Q2b2x2

4d2C2
pT2

ad0

" #
ð58Þ

corresponding to a weakly curved flame, with shape

z ¼
Qbx2

2
p

2dCpTad0

: ð59Þ

If kinematics were the whole story these results would

complete it. We have assumed that the flame is stationary in

a flow of mass flux M0; and the only necessary accommo-

dation to the mixture gradient is that the flame curve so that

the normal mass flux is M, as defined by Eq. (58). However,
Fig. 12. The tribrachial flame supported by weak mixture gradients

in the supply, cf. Fig. 5a.
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as a consequence of the curvature, the flame experiences

stretch—a pseudo-Lagrangian area increase here generated

by a non-vanishing velocity component parallel to the

sheet—and a stretched flame does not travel at the adiabatic

flame-speed. The stretch, equal to M0Qb=
p

2dCprTad0
; is

small, and there is a universal relation between small stretch

and the flame-speed perturbation that it generates (the

Markstein correction, discussed earlier). This correction

may be calculated for a flame in a uniform mixture ðX1 ¼

Y1 ¼ 0Þ since the two small effects (of concentration

gradient and stretch) are, to first order, additive. (We

identify the flame position with the flame-sheet position.) In

this way we conclude that the flame travels at a speed

corresponding to a mass flux

M0 1 2
Qb

p
2

CpTad0

" #
: ð60Þ

The flame is slowed by the gradient. Note that M0; the mass

flux associated with supply values X ¼ X0 ¼ Y0 ¼ Y is, in

the 2D context, defined by the values of X and Y at the

stoichiometric level surface defined by the mixing solution

(50), so that X0 ¼ Y0 ¼ 1
2

X1 ¼ 1
2

Y1:

A treatment of weakly stretched tribrachial flames when

LeY is different from 1 is described in Ref. [28]. The results

are as one would expect from the effect of Lewis number on

weakly stretched deflagrations, and are briefly described

later.

When b , X0; X changes by Oð1X0Þ and Y changes by

Oð1Y0Þ amounts for OðdÞ changes in x, and the flame-speed

of each deflagration branch changes by OðSoÞ amounts in

this distance, so that the radius of curvature of the edge-

flame is comparable to d. In this case an asymptotic

treatment is possible, but it leads to a non-linear integral

equation that can only be solved numerically [29]. In the

context of the gradient generated by a counterflow, a

comparison of Eqs. (50) and (51), (56) shows that b , X0 is

equivalent to a , 12D=d2: U=So (the normalized edge-

speed) falls monotonically with a on this scale, approaching

0 as ad2=12D!1: The distinct flame branches merge in

this limit.

Let us now estimate the value of a sufficient to

extinguish the 1D diffusion flame. As we have noted, d is

the thickness of the stoichiometric deflagration. The

corresponding flame-sheet structure is characterized, in the

usual way, by a diffusion-reaction balance in which X ,
1X1; Y , 1Y1; in a region of thickness , 1d; so that the

reactant gradients , X1=d: The magnitude of d is deter-

mined by this balance, and

d2 ,
rD e1=1

13BX1

: ð61Þ

Precisely the same balance and the same estimate for the

flame-sheet thickness 1d arises in Liñán’s analysis of

diffusion-flame quenching [16], but then the concentration

gradient X1=d is comparable to X1

ffiffiffiffiffiffi
a=D

p
to match with the

counterflow structure beyond the flame-sheet, so that a ,
D=d2 at extinction. This is the largest value of a that is of

interest.

Dold [30] has described the asymptotic structure for

values of a ranging from , 12D=d2 to , D=d2; and three

distinct analyses are necessary, Fig. 13. Region {C} we have

already discussed, corresponding to U=So , 1; a=ae , 12

(ae is the extinction value of a ); region {B} corresponds to

U=So ,
ffiffi
1

p
; a=ae , 1; and region {A} corresponds to

U=So , 21=1; a=ae , 1: Region {C} has its counterpart in

the 1D model, D1 ¼ Oð1Þ; and if a0 is the value of a for

which the edge-speed is zero we note that a0=ae ¼ Oð1Þ; in

agreement with the 1D model. But the latter has only two

distinct asymptotic structures (for a=ae , 1; 1), not 3. It is

not surprising that details are lost in the brutal simplifica-

tions necessary to construct a 1D model.

The type of flame discussed in this section has been

usefully analyzed using an approximate strategy in which

the flame-sheet is assumed to have the shape of a parabola

[31].

7. The edges of deflagrations

Edge-flame theory has strong roots in Phillips’s

experimental observations of flames in stratified mixtures

[24], and because of the way it evolved it was assumed for

some years that edge-flames could only exist for non-

premixed reactants. Associated with this was a tendency to

view edge propagation in the narrow context of the mixing

structures at the edge, particularly the tribrachial structure

with its twin deflagrations (‘the edge propagates because it

looks like a deflagration’). But if one views edge-flames in

the context of an underlying 1D multiple response, it is clear

that they can exist in any combustion context in which there

are two stable 1D solutions, and that their wave-like

property is rooted in the 1D response.

Multivalued responses occur in a number of con-

figurations containing deflagrations. Consider, for example,

the plane counterflow of a fresh mixture and an inert.

Provided the inert is at not too high a temperature, variations

Fig. 13. Schematic showing the variations of edge-speed with

inverse rate of strain deduced from 2D asymptotic treatments [30].
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of flame-sheet location with the inverse Damköhler number

(,a ) are typified by Fig. 14, with a stable upper branch and

a stable lower branch. In a finite D-interval, both stable

solutions exist simultaneously, and these can be used to

define end states for an edge-flame [32,33]. A simple

mathematical framework in which this can be done is

defined by the equations

r
›

›t
2 rax

›

›x

� �
ðCpT ; YÞ

¼
l

Cp

›2

›x2
þ

›2

›z2

 !
ðCpT ; YÞ þ ðQ;21ÞBY e2E=RT

; ð62Þ

with boundary conditions

x !21 : T ! Ti; Y ! 0;

x !þ1 : T ! Tf ; Y ! Yf ;

ð63Þ

z !21 : ‘cold’ solution T ! T{1}; Y ! Y{1};

z !þ1 : ‘hot’solution T ! T{2}; Y ! Y{2}:

ð64Þ

We have chosen the Lewis number to be 1.

The Schvab–Zeldovich variable

F ; T þ
QY

Cp

ð65Þ

satisfies a reaction-free equation, with steady solution

F ¼ Tad þ
1

2
ðTi 2 TadÞerfc

1
p

2
j

� �
; j ¼ x

ffiffiffiffiffiffiffiffi
raCp

l

s
ð66Þ

where Tad ¼ Tf þ QYf =Cp is the adiabatic flame-

temperature defined by the fresh supply at x !1:

Then a single equation, suitably non-dimensionalized,

has to be solved, viz.

›T

›t
2 j

›T

›j
¼

›2T

›j2
þ

›2T

›z2

þ
D

e2
ðF2 TÞexp

1

e
1 2

Tad

T

� �
: ð67Þ

Sample 1D steady solutions ð›=›t ¼ 0 ¼ ›=›zÞ on the lower

and upper branches of Fig. 14 are shown in Fig. 15, and

define the boundary conditions (64). Reaction plays little

role in the solution {1}.

When Eq. (67) is solved with appropriate initial data

(typically, a smooth interpolation between the hot and cold

solutions), what emerges depends on the value of D. Near

the extinction point ð1=D < 0:517Þ a failure wave of fixed

form emerges once initial transients have decayed; near the

ignition point ð1=D < 0:294Þ an ignition front emerges.

Solutions of this kind are shown in Figs. 16 and 17. The

hooked nature of the edge can be understood by reference to

the limit flame-sheet positions defined by Fig. 14. If the

Fig. 14. Position of a premixed flame in a straining flow of fresh

mixture and inert, from Ref. [33], with permission. A point on the

upper solution branch corresponds to a flame on the fresh-mixture

side of the stagnation point, a classical adiabatic deflagration in the

limit of vanishing strain.

Fig. 15. Temperature profiles for the ‘hot’ {2} and ‘cold’ {1} 1D

solutions, end solutions for a premixed edge-flame in a fresh/inert

counterflow, from Ref. [33], with permission.

Fig. 16. Temperature contours for a failure wave, a premixed edge-

flame in a fresh/inert counterflow, from Ref. [33], with permission.

The structure is translating upwards.
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dimensional edge-speed is U, a non-dimensional speed is

defined by

V ¼ rU

ffiffiffiffiffi
Cp

lB

s
1

e
e1=2e ð68Þ

variations of which are shown in Fig. 18. Since

V ¼
rU

Mad1

p
2Ta

Ta 2 Tf

ð69Þ

where Mad1
is the adiabatic mass flux for the classical

deflagration defined in the asymptotic limit 1=e !1;

comparable to the finite 1=e value, Mad; V is roughly a

measure of rU on the scale Mad:

Note that the flame-sheet pictured in Fig. 17 is

translating vertically with unchanging shape, and even

when account is made of the x-wise fluid flow (negative for

x . 0; positive for x , 0) the tip of the sheet appears to have

a velocity relative to the fluid with components both normal

and parallel to the sheet. If one wanted to link the stability

dynamics of the configuration of Fig. 2 to a ‘flame-speed’ it

would apparently be necessary to account for advance or

retreat of the edge as well as of the sheet itself.

Failure waves of the kind described here have been

observed in methane/air flames rising in a standard

inflammability tube containing sublimit mixtures [6], Fig.

1e. For such mixtures, the rise speed of the flame and the hot

bubble of gas behind it is buoyancy-controlled—following

extinction of the flame, the hot gases continue to rise with

unchanged speed until they have cooled and buoyancy

forces have weakened. Consequently, in a reference frame

tied to the rising bubble, the flame is close to a stagnation

plane and experiences a straining flow generated by the

displacement by the bubble of the cold fluid ahead of the

flame. The post-flame gases are cooled by heat losses to

the tube walls so that in due course, after the super-

combustion initiated by the spark has subsided, the flame is

quenched at the centerline by reason of the mechanism

identified in Fig. 14. Once the quenching is initiated in this

way, it continues via an axisymmetric failure wave that

sweeps down the flame from the tip to the skirt. This failure

wave propagates because of its innate property, and because

of convection by the flow parallel to the flame.

The only other experimental record of edge-flames in

mixtures is reported in Ref. [34]. A standard counterflow is

used in which high aspect ratio slots deliver the two flows,

but are misaligned by a few degrees so that the rate of strain

varies across the slot width. In this way an edge-flame can be

generated, positioned at that point where the rate of strain is

compatible with (essentially) a zero edge-speed. We shall

discuss these experiments in a later section.

7.1. The symmetric counter-flow problem

A second combustion field characterized by premixed

reactants and a multivalued response is generated by the

symmetric counterflow of fresh mixture against fresh

mixture. At sufficiently large straining rates the twin

flame-sheets interact with each other, and extinction occurs,

Fig. 19. In addition, in a context that resolves the cold-

boundary difficulty (e.g. a cut-off temperature), there is a

Fig. 17. Reaction-rate contours for an ignition front, a premixed

edge-flame in a fresh/inert counterflow, from Ref. [33], with

permission. The structure is translating downwards.

Fig. 18. Variations of edge-speed with inverse Damköhler number

ð, aÞ; a premixed edge-flame in a fresh/inert counterflow, from

Ref. [33], with permission.

Fig. 19. Flame-temperature vs. Damköhler number, twin deflagra-

tions in a symmetric premixed counterflow, from Ref. [35], with

permission.
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quenched solution

T ¼ Tf ; Y ¼ Yf ; ð70Þ

the supply values, here specified at lxl ¼ 1: Apart from the

adjustment of the boundary conditions, the mathematical

problem is that defined by Eqs. (62)–(65), but now the

Schvab–Zeldovich variable F has solution

F ¼ Tad ð71Þ

and an appropriate non-dimensional equation can be written

as

›T

›t
2 j

›T

›j
¼

›2T

›j2
þ

›2T

›z2

þ DðTad 2 TÞexp 2
E

R DT

1

T

� �
;

D ¼
B

ra
; DT ¼ Tad 2 Tf :

ð72Þ

Failure wave and ignition front solutions are shown in

Figs. 20 and 21 [35]. Insofar as edge-speed variations are

concerned it should be noted that an error in the scaling used

in Fig. 4 of Ref. [35] suggests that the edge-speed exceeds

the adiabatic flame-speed for large D, but in fact rU # Mad;

equality prevailing in the limit.

7.2. Deflagration with radiation losses

The third example of a deflagration with an edge is

rooted in the 1D deflagration with radiation losses. The 1D

response is similar to that of Fig. 19 when D is replaced by

the equivalence ratio (the turning point defines an intrinsic

lean inflammability limit fe), and edge-flame solutions can

be constructed via the strategy that we have described.

Unexpectedly, however, the edge-speed is positive for all

f . fe; and appears not to vanish in the limit f d fe [35].4

As we shall see, the same kind of thing can happen for the

other configurations that we have discussed (both premixed

and non-premixed) for certain choices of the Lewis number

(or numbers), and we shall discuss the phenomenon in some

detail in these other contexts. There, it is linked to the role

played by 2D solution branches that can be meaningfully

added to responses such as that of Fig. 19, and to edge-

flames that link 1D solutions with 2D solutions. Here the

matter has not been explored.

8. Lifted laminar flames

When a flame supported by the flow from a burner is

stabilized at a significant height above the burner rim, it is

said to be a lifted flame. A lifted flame propagates in the

flow, has an edge unaffected by the burner rim, and for the

laminar case at least is stabilized by weak gradients of

velocity and mixture strength within the flow. Lifted

turbulent flames have long been studied as a framework in

which to examine the behavior and properties of non-

premixed turbulent combustion, and in recent years it has

been recognized that laminar lifted flames can also exist for

certain fuels. The first extensive discussion may be found in

Ref. [36], and there have been a number of relevant

publications by Chung and his colleagues [37–40].

A typical flame-shape is shown in Fig. 22, and has a

well-defined annular tribrachial structure, consistent with a

high propagation speed (large Damköhler number). The lift-

off height zp is typically much greater than a length

characteristic of the flame size, so that apart from a flow

displacement in the neighborhood of the flame, the field

between the rim and the flame is that of a cold jet with

mixing. An examination of this field permits an estimate of

the lift-off height, and insight into the stability mechanism.

An important parameter is the Schmidt number

Sc ¼
n

DY

ð73Þ

where n is the kinematic viscosity, and DY is the diffusion

coefficient of the fuel supplied by the burner. Stable lifted

flames are seen for fuels such as propane and n-butane for

which the Schmidt number is greater than 1.

A point force generates a jet with axial velocity

u ¼
3

8pnz

J

r

1

ð1 þ ð1=8Þh2Þ2
; ð74Þ

where J is the momentum flux,

h ¼
r

nz

3J

8pr

� �1=2

; ð75Þ

and z, r are axial and radial coordinates. This is an

asymptotically valid description for the jet issuing from a

burner when z is large compared to the burner diameter. The

corresponding expression for the fuel mass fraction,

obtained by solving the species transport equation, is

Y ¼
ð1 þ 2ScÞ

8pnz

IY

r

1

ð1 þ ð1=8Þh2Þ2Sc
ð76Þ

where IY is the supply mass flux of fuel. The oxygen mass

fraction is constant.

Fig. 20. Temperature topography for a failure wave, twin

deflagrations in a symmetric premixed counterflow, from Ref.

[35], with permission. The left panel shows the initial structure, the

right panel shows the structure when it has retreated almost to the

computational boundary.

4 Unpublished calculations by Short appear to confirm this

behavior.
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If we suppose that at the tribrachial ring z ¼ zp; r ¼ rp;

the axial velocity is equal to the adiabatic flame-speed for a

stoichiometric mixture (the leading term in Dold’s estimate

of edge-speed for a weakly stretched edge-flame) and Y has

the stoichiometric value Yp; then Eqs. (74)–(76) constitute

equations for zp and rp; and eliminating rp we find

zp , uð2Sc21Þ=ðSc21Þ
0 ð77Þ

where u0 is a characteristic burner exit speed so that J , u2
0

and IY , u0: Thus the lift-off height increases with blowing

velocity if Sc . 1 or Sc , 1=2: Typical level surfaces u ¼

up and Y ¼ Yp when Sc . 1 are drawn in Fig. 23, and where

Fig. 21. Temperature contours for an ignition front, twin deflagrations in a symmetric premixed counterflow, from Ref. [35], with permission.

Fig. 22. Schematic of a lifted laminar non-premixed flame.

Fig. 23. Level curves u ¼ up; Y ¼ Yp for a lifted laminar non-

premixed flame.
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they cross defines the solution zp; rp: If the flow is too strong

the curves fail to cross (increasing u0 increases J more

rapidly than IY ) and blow-off occurs. The curve Y ¼ Yp

defines the stoichiometric level surface, the location of the

diffusion flame downstream of the tribrachial ring, and

immediately prior to blow-off the flame is located at the tip

of this structure with rp ¼ 0:

If the flame is perturbed in a quasi-steady fashion, the

tribrachial ring moves along the level surface Y ¼ Yp so that

u changes but the flame-speed up does not, and the flame

position z ¼ h changes according to

dh

dt
¼ u 2 up ð78Þ

where u ¼ Ahð1=ScÞ21 for some constant A. Thus for small

perturbations for which

h ¼ zpð1 þ z0Þ; lz0lp 1; ð79Þ

we have

zp
dz0

dt
¼ Azð1=ScÞ21

p

1

Sc
2 1

� �
z0 ð80Þ

and this describes a stable (unstable) perturbation if Sc . 1

ðSc , 1Þ: The Schmidt number for propane is ,1.38, that

for n-butane ,1.52, and stable lifted structures are obtained

for these gases. On the other hand, methane and ethane, both

of which have Schmidt numbers less than 1, do not exhibit

lift-off.

In this discussion it is assumed that the axial gas

speed at the tribrachial ring is equal to the adiabatic

flame-speed for a stoichiometric mixture. In reality, as

the work of Chung et al. recognizes, displacement by the

flame of the flow ahead of the flame causes the edge to

travel at a speed relative to the undisplaced flow that is

greater than it would be in the absence of displacement.

This is a hydrodynamic effect lost by the constant density

model. The magnitude of the effect depends on the

length of the flame, and it is suggested in Ref. [38] that

here the effect is a modest one, 30% or so. In the case of

mixing layers, for which the flames are long, the effect is

much stronger, and analytical evidence is presented in

Ref. [41] that for large Damköhler number flames the

speed is augmented by a factor , ðrf =rbÞ
1=2: Numerical

results confirm this for density ratios up to ,5.

Refinements of the analysis presented here (which

follows the work of Chung and his colleagues) that account

in an approximate fashion for both stretch effects and flow-

divergence effects are described in Ref. [42]. Full DNS of

laminar lifted flames, and comparisons with detailed

measurements of the combustion field, are reported in Ref.

[43].

In the final analysis, laminar lifted flames constitute an

exercise in stabilization of a deflagration in non-uniform

fields of reactants and velocity, and it is not clear that

thinking of them as edge-flames serves much purpose.

9. Effects of edge-curvature

In our discussion so far we have considered only straight

edges, and have identified two important Damköhler

numbers: De; the quenching Damköhler number for the

underlying 1D problem; and D0; the Damköhler number for

which the edge-speed is zero. Absent an edge, a flame-sheet

can be destroyed by reducing D below De; with an edge, it

can be destroyed by a failure wave generated when D is

reduced below D0: Particularly in the context of turbulent

combustion, flame edges will be curved, and the behavior of

a hole in a flame-sheet, or the behavior of an isolated portion

of flame (a flame isola) will be affected by the curvature.

There has been some discussion of this problem for non-

premixed edge-flames.

The effects of curvature on D0 can be discussed in a

cylindrically symmetric context using the 1D model [44].

Then the term 21=sðdu=dsÞ is added to the l.h.s. of Eq. (24),

V is set equal to zero, and a straightforward analysis yields

formulas in terms of modified Bessel functions:

Cd ¼
I1ðspÞ

I0ðspÞ
ð, 1Þ for a hole;

Cd ¼
K1ðspÞ

K0ðspÞ
ð. 1Þ for an isola;

ð81Þ

where C is defined by Eq. (38) with D ¼ Dd; C ¼ Cd for a

stationary edge (Dd ¼ D0 and Cd ¼ C0 ¼ 1 when the

stationary edge is straight). C has to be reduced below C0 to

fix the edge of a hole, to prevent it from closing, increased to

fix the edge of an isola to prevent it from shrinking, Fig. 24.

Thus for fixed D, the edge of a hole is stronger than a

straight edge, whereas the edge of an isola is weaker, and the

strength and weakness are monotonic functions of curva-

ture. A static stability argument then makes clear that the

steady solutions defined by Eq. (81) are unstable: Their

significance is as water-shed solutions.

The 1D model has also been used, in a quasi-steady

context, to examine edge-speed as a function of Damköhler

number and curvature [44], assuming that such a function

exists. However, 2D simulations [45] suggest that this can at

most be legitimate for a shrinking hole and a shrinking isola.

Then trajectories in the edge-speed/radial-location plane are

quickly attracted to a universal curve defined by the

Damköhler number, independent of the initial radius. On

the other hand, for a growing hole or a growing isola, the

trajectories only merge after the edge-speed has essentially

achieved the infinite radius (straight-edge) value, negative

or positive as the case may be. Fig. 25 shows some

trajectories for a shrinking hole. The speeds shown are only

of qualitative significance, as the fluid displacement effect

discussed earlier is not accounted for.

The 2D simulations have also been used to calculate

values of Dd for various radii and three fuel Lewis numbers,

LeY ¼ 0:5; 1, 1.5. LeX is fixed at 1, and the heat of reaction is

adjusted for the three cases to fix the Burke–Schumann
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flame-temperature of the underlying 1D problem. Variations

of Dd=D0 with curvature show little variation between the

three cases, and D0 is approximately 70% bigger than De in

all three cases. The following general remarks may be made:

A hole of diameter ,1 (the mixing layer thickness) closes

for all but a tiny interval of D bounded below by De; a hole

of diameter ,3 closes for D greater than De by 30–40%,

depending on LeY ; and a hole of infinite diameter closes for

D greater than De by more than 70%. Even larger D are

required for isolas to grow—thus an isola of diameter less

than 1/2 requires a D of at least 2:7 £ De; 50% greater than

D0:

Partially quenched spherical flames have not been

discussed, but removal of a small portion generates a hole,

removal of most of the flame generates an isola.

9.1. Holes in counterflow flames

The issues of holes in flames and lifted flames come

together in experimental observations of Pellet and his

coworkers [46]. They examine the axisymmetric counter-

flow of nitrogen-diluted hydrogen and air and find that at

sufficiently small Damköhler numbers a circular hole

appears in the single flame-sheet. The computations of

Ref. [47] capture this phenomenon and provide an

explanation.

At large Damköhler numbers the flame-sheet is whole.

Increasing the blowing rate weakens the flame, and at a
Fig. 25. Trajectories for shrinking holes in the radius-speed plane,

from Ref. [45], with permission.

Fig. 24. Variations in the radius of a stationary hole and stationary isola with the scaled Damköhler number Cd; 1D model.

J. Buckmaster / Progress in Energy and Combustion Science 28 (2002) 435–475 453



critical straining rate extinction occurs at the centerline. But

off the axis (on the scale of the jet diameter) where the

straining rate (more precisely, the scalar dissipation rate) is

lower, the flame can survive in a 1D sense in the mixing

layer, and can survive in the absolute sense provided the

flame-edge can be stabilized. In the immediate vicinity of

the axis the radial velocity is an increasing function of

radius, but beyond the jet radius (there is no inert coflow) the

velocity is a decreasing function: The edge can be stabilized

in this negative gradient. Thus the edge-flame is similar to

the lifted flames discussed earlier, as it is stabilized by local

field gradients rather than by interaction with a boundary or

holder.

10. Thermal-diffusive instabilities

Thermal-diffusive instabilities are a well-known feature

of deflagrations and diffusion-flames, and are well under-

stood for both, albeit recently. Roughly speaking, they arise

when one or more Lewis numbers are sufficiently small or

sufficiently large. Edge-flames are subject to the same

instabilities, and we shall start with a discussion in the

premixed context.

10.1. Symmetric premixed counterflow, Le ¼ 0.3

Consider the symmetric counterflow of fresh mixture

discussed earlier, but now with Le ¼ 0:3; a value relevant to

lean H2/air mixtures. This problem was discussed in Ref.

[48] where unsteady behavior is accounted for; and in Ref.

[49], where steady solutions are discussed (stationary

solutions, steadily propagating waves).

The 1D response is similar to that of Fig. 19, where

Le ¼ 1; except that the maximum temperature is not

attained in the limit D !1 (zero strain) because of well-

known stretch/Lewis number effects, Fig. 26. However, the

important distinction between Figs. 19 and 26 is not one of

shape, but the stability boundary marked in Fig. 26,

associated with Turing instabilities that arise because Le is

small. It has long been known that for small values of Le, as

here, the unstrained flame displays a cellular instability and

that this can be suppressed by a sufficiently large straining

flow. Thus some portion of the upper branch extending out

to D !1 corresponds to unstable solutions. Less well

known is the fact that as D is decreased the instability can

reemerge as De is approached and the twin flames are

weakened by their interaction. Thus for values of D in an

interval ðDe;DNSPÞ a linear modal stability analysis, for

disturbances , eikzþlt; yields real positive eigenvalues for a

finite wave-number interval ðk1ðDÞ; k2ðDÞ; where k1 . 0

(recall that z is measured perpendicular to the x–y

counterflow plane). Linked to this, a branch of steady 2D

solutions bifurcates from the point on the upper branch

where D ¼ DNSP (the neutral stability point) and wanders in

some fashion in the response plane, possibly displaying

additional bifurcations and multiplicities. Although its path

has not been determined, some part of it lies to the left of

D ¼ De; corresponding to sublimit solutions, as we shall

see.

Sublimit solutions, in this sense, are not unusual, are in

fact a well-known feature of small Lewis number combus-

tion fields. A good example is afforded by flame-balls,

whose spherical geometry makes them robust, better able

than a plane flame to resist heat losses or straining flows

[50–52]. Flame-balls with radiation losses define an

intrinsic inflammability limit that is smaller than the limit

fe for plane solutions. Propagating flames that are cellular

can also exist for sublimit conditions, reinforced by the

flame front curvature [53]. For the configuration of study

here, the sublimit structures have some similarity to flame-

balls, but are cylindrical and have been called, in other

contexts, flame-strings [54]. Their role in the edge-flame

context is that they define the end state {2} when D , DNSP;

being then the only stable unquenched solution.

Consider first the choice D ¼ 5:611 £ 105; a value

greater than DNSP so that {2} lies on the stable 1D branch.

A standard edge-flame is generated in this case, Fig. 27, with

an enhanced temperature near the edge, because of the

curvature.

The choice D ¼ 4:031 £ 105 lies in the interval (De,

DNSP), and the 1D solution is not available as the ‘hot’ end-

point {2}. The computations place {2} on this branch

initially, but the instabilities drive it to the 2D branch and the

edge leaves behind a train or warp of stationary interacting

flame-strings, Fig. 28. The leading cell, advancing

unsteadily, elongates and splits in a periodic fashion. The

maximum temperature in each trailing string is <2.1,

whereas the minimum temperature on the centerline x ¼ 0 is

<0.7, so that each string, although interacting with its

neighbors, has a separate identity.

Reduction of D to 3:794 £ 105; a value smaller than De;

leads to different dynamics, Fig. 29. With a cubic

interpolation between the quenched solution and the 1D

unstable solution for D ¼ 3:951 £ 105 defining initial
Fig. 26. 1D response for twin symmetric deflagrations in a

counterflow, Le ¼ 0:3; from Ref. [48], with permission.
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Fig. 27. Temperature topography for an ignition front, twin symmetric deflagrations in a counterflow, Le ¼ 0:3; D ¼ 5:611 £ 105 (.DNSP),

from Ref. [48], with permission.

Fig. 28. Temperature contours for an ignition front, twin symmetric deflagrations in a counterflow, Le ¼ 0:3; D ¼ 4:031 £ 105 (,DNSP), from

Ref. [48], with permission.
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conditions, the edge advances but the post-edge structure

collapses. The surviving edge structure then acts as an

ignition source for propagation in both directions, with one

edge advancing in the positive z-direction, the other in the

negative z-direction. The widening structure between the

edges is a line of stationary interacting flame-strings.

Steady edge-speeds, where they are defined (no trailing

cellular structures) are shown as a function of the rate of

strain for various Lewis numbers in Fig. 6 of Ref. [49] which

we do not reproduce here as it is qualitatively very similar to

Fig. 33 which shows edge-speeds for the non-premixed

case, discussed in Section 11.

Other types of solution are possible and what is

generated in the long time depends on the choice of D and

on the initial conditions. Fig. 30 shows a pair of stationary

strings generated when D ¼ 1:343 £ 105: Here the post-

edge structure collapses, but the surviving structure fails to

act as an ignition source and a short flame survives with two

stationary edges. Fig. 31, D ¼ 1:976 £ 105; is a variation on

this, a single stationary string.

A large number of calculations for D , DNSP lead only

to the three late time configurations described here—an

‘infinite’ chain of strings, a pair, or a singleton. These are

also the only configurations observed in Ronney’s exper-

iments, which we discuss later; photographs of a string pair

and a single string are reproduced in Fig. 32 [55].

The phenomena that we have described in this section

only occur for values of Le which are rarely met, absent

artificial mixture additives (SF6, for example). When Le ¼

0:7; and D < DeðLeÞ (the Lewis number-dependent extinc-

tion Damköhler number) but larger, the edge-speed is

negative and sublimit structures do not exist, although they

do for Le ¼ 0:5: Thus the only common mixture in which

these things will be seen is lean hydrogen/air.

11. Lewis number effects and the counterflow diffusion

edge-flame

It has long been known that diffusion flames can display

cellular instabilities for suitable choices of the Lewis

number, and recent work has substantially clarified the

matter [56,57]. The instabilities occur in a neighborhood of

the extinction point (e.g. the neighborhood of D ¼ De in

Fig. 2). Thus, phenomena similar to that which we have

described in Section 10 can occur in the diffusion flame

context.

An extensive discussion of non-premixed edge-flames

with LeX ¼ 1 and various values of LeY can be found in Ref.

[28]. The propagation speeds of weakly stretched (large D )

tribrachial flames are calculated using asymptotic methods

(cf. Eq. (60) for LeX ¼ LeY ¼ 1), and numerical solutions

Fig. 29. Unsteady collapse of an edge-flame followed by the

advance (right and left) of two ignition fronts, D ¼ 3:794 £ 105

(,De), from Ref. [48], with permission.

Fig. 30. Temperature profiles at the symmetry plane: evolution to

twin stationary flame-strings, D ¼ 1:343 £ 105; from Ref. [48], with

permission.

Fig. 31. Temperature profiles at the symmetry plane: evolution to a

single flame-string, D ¼ 1:976 £ 105; from Ref. [48], with

permission.
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Fig. 32. Flame-string structures (pair and singleton) observed experimentally in the symmetric twin counterflow configuration for lean

hydrogen/air mixtures, from Ref. [55], with permission.

Fig. 33. U=So vs. rate of strain for edge-flames in a non-premixed counterflow, showing the effect of Lewis number, from Ref. [28], with

permission; lF is negative for LeY , 1; positive for LeY . 1: Note that edge-speeds calculated using the constant-density model are subject to

serious error, because of failure to account for the displacement effect discussed in Section 8. It is conceivable, therefore, that some of the

qualitative features identified here could be in error.
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are constructed when D is not large, Fig. 33. This figure

looks quite similar to Fig. 4.4 of Ref. [58] which shows

variations of flame-speed with rate of strain for a 1D

deflagration in a counterflow. (As we noted earlier, flame-

speed can only be legitimately defined for a weakly

stretched deflagration; for an unbounded edge-flame

however, which propagates in a wave-like fashion, edge-

speed is meaningful even if a leading deflagration is strongly

stretched.)

Interestingly, the calculations of Ref. [28] do not

lead to cellular structures for small LeY : The reason for

this is that diffusion-flame instability depends critically

not on just the choice of Lewis numbers, but also on an

equivalence ratio defined as the ratio of the mass

fraction of fuel in the fuel supply to the mass fraction of

oxidizer in the oxidizer supply, normalized with the

stoichiometric ratio. This has to be sufficiently small to

generate cellular instabilities when LeY is small, but the

calculations of Ref. [28] are for a value of 1. This point

is discussed further in Section 11.1.

When both Lewis numbers are small, cellular instabil-

ities can be generated without concerns about the supply

stoichiometry, and studies have been made of the symmetric

counterflow for LeX ¼ LeY ¼ 0:3: Solutions exhibit sublimit

structures (solutions for D , De), a positive edge-speed

when D ¼ De; and edge-flames that correspond to a

transition between a stable 1D solution and a stable 2D

(cellular) solution. This problem was first discussed by

Thatcher and Dold in an unpublished report of the Seventh

International Conference on Numerical Combustion,

Fig. 34. The periodic structure (cellular) generated by an ignition front at a sub-ignition Damköhler number, non-premixed, LeY ¼ 0:3;

LeX ¼ 0:3; from Ref. [60], with permission. (In the present notation, y would be replaced by z.)
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1998, work that was eventually published in Ref. [59],

but we shall present results from the Masters thesis of

Kochevets [60].

Thus consider the problem

›

›t
2 x

›

›x

� �
ðT ;YÞ

¼
›2

›x2
þ

›2

›z2

 !
T ;

1

Le
Y

� �

þ DYðY 2FÞe2u=T ð1;21Þ;

F ¼ Y 2 X ¼ erf x

ffiffiffiffiffi
Le

2

r !
;

x !21 : T ! T1; Y ! 0;

x !þ1 : T ! T1; Y ! 1;

lzl!1 :
›T

›x
¼ 0 ¼

›Y

›z
:

ð82Þ

Note the use of Neumann data as lzl!1; the desired

solutions are generated by appropriate choice of the initial

conditions. The parameters are Le ¼ 0:3; T1 ¼ 0:2; u ¼ 15;

Tbs ¼ 1:1128; and the extinction Damköhler number is

De ¼ 4:55 £ 109 with a corresponding maximum tempera-

ture Tmax ¼ 0:95:

Edge-flames generated in this way have positive edge-

speeds for D $ De; and also for an interval to the left of De:

Consider, for example, what happens when D ¼ 5:5 £ 109 is

used to define initial conditions, but at t ¼ 0; D is reduced to

the value 4 £ 109: The post-edge state collapses but the edge

survives, Fig. 34, and acts as an ignition source for two

fronts, one traveling to the left, the other to the right, just as

in Fig. 29 for the twin deflagrations.

Two kinds of sublimit structures are reported, a periodic

array of cells or flame-string like structures, or a single

flame-string. These solutions are constructed using periodic

boundary conditions in z in an attempt to accurately

establish the late time configuration, free of influence

from initial conditions. Since the period of the periodic array

is not known a priori, the computation interval is adjusted

until an integer number of identical cells occupy the interval

in late time. In this way it is possible to calculate a portion of

the 2D solution branch that, it is inferred, bifurcates from the

strong-burning 1D branch.

Thus Fig. 35 shows three sets of points in the Tmax –D

plane. The crosses lie on the 1D response, asymptoting to

the Burke–Schumann temperature of 1.1128, and terminat-

ing at De where Tmax ¼ 0:95: The circles represent solutions

characterized by a periodic array of cells. The curve so

traced appears to have a vertical tangent at D < 7:5 £ 109

below which solutions are not found, suggesting the

existence of an unstable branch that bifurcates subcritically

from the 1D branch. The stars represent single cell solutions.

It is not possible to construct anything but quenched

Fig. 35. Maximum temperature vs. Damköhler number on a number of solution branches, non-premixed, LeY ¼ 0:3; LeX ¼ 0:3; from Ref. [60],

with permission: ( £ ) 1D; (W) periodic array of strings; ( p ) single string.
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solutions for values of D less than approximately 4 £ 108:

And there is evidence of complicated behavior in the

neighborhood of D ¼ 1:4 £ 109 at the end of the single cell

branch and the periodic cell branch. Fig. 36 shows solutions

for three values of D. For the smallest value, 1:3 £ 109; the

solution is characterized by a single cell, and for the largest

value, 1:5 £ 109; it is characterized by an array of cells

whose period is consistent with the neighboring solutions on

the periodic branch. But for the intermediate value D ¼

1:4 £ 109 a periodic solution is generated with a period

roughly double that for the larger D.

11.1. The counterflow diffusion flame, LeX ¼ 1, LeY ¼ 0.3

So far we have discussed diffusion-flame edges when

LeX ¼ LeY ¼ 0:3: These values can be generated in the

laboratory by appropriate choice of reactants and diluents,

but diluted hydrogen burning in air is of more practical

importance, and we discuss it here [61].

Now the problem is

›

›t
2 x

›

›x

� �
ðT ;X; YÞ

¼
›2

›x2
þ

›2

›z2

 !
T ;X;

1

LeY

Y

� �

þ ðq;2aXY1;2aY X1ÞDXY e2u=T
;

x !21 : X ! 1; Y ! 0; T ! T1;

x !þ1 : X ! 0; Y ! 1; T ! T1;

lzl!1 :
›

›z
ð·Þ! 0:

ð83Þ

Here X and Y have been scaled with the supply values X1

and Y1; so that the modified stoichiometric coefficients are

aXY1 and aY X1; and the ratio

h ¼
aXY1

aY X1

ð84Þ

plays an important role in the nature of the solutions,

controlling, along with LeY ; whether or not cellular

structures are generated. (The significance of h is empha-

sized in Ref. [57] for cellular instabilities of 1D flames , in

Ref. [62] for pulsating instabilities of 1D flames.) If

aX=aY ¼ 8; corresponding to the global reaction

H2 þ
1
2

O2 ! H2O;

and X1 ¼ 0:22 (air), Y1 ¼ 0:01 (14% hydrogen in nitro-

gen), then h ¼ 0:36: Cellular structures can be generated for

this case (and also for h ¼ 0:5; 0.75), but not for h ¼ 1:

The 1D extinction Damköhler number is 1:837 £ 105;

but solutions can be found for D as small as 1:2 £ 105: The

strong-burning 1D solution is marginally stable when D ¼

1:897 £ 105; but DNS yield cellular structures, implying a

subcritical bifurcation from the neutral stability point. The

concentration contours for the stationary array of strings

generated when D ¼ 1:89686 £ 105 shown in Fig. 37 give

some insights into the nature of the combustion field in this

case. At the center of each string (where the contours are

vertical) there are x-wise fluxes of fuel (to the left) and

oxidizer (to the right) corresponding to a diffusion flame.

However, there is substantial mixing between each string,

and mixed fluxes from these regions move with a substantial

z-component to sustain reaction within the string.

A finite number of strings can be generated (sublimit

structures) and three are reported when D ¼ 1:28427 £ 105;

two for D ¼ 1:22499 £ 105; and one for D ¼ 1:18548 £

105: These structures are sustained because LeY is small, and

we expect LeY to be most relevant in fuel-lean regions of the

combustion field, where X=Y . 0:36 (recall that X and Y

have both been scaled with supply values). But it is probable

Fig. 36. Solution in the neighborhood of the transition from the single string branch to the periodic string branch of Fig. 35, from Ref. [60], with

permission.
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that this is not sufficient. For an isolated flame-ball, the shift

from fuel-lean to fuel-rich combustion occurs not when X1

and Y1 are in stoichiometric proportion, but when Le21
X X1

and Le21
Y Y1 are in stoichiometric proportion since, in the

final analysis, it is the fluxes to the reaction zone that matter,

and for a flame-ball these are entirely diffusional [51,63]. If

we apply that criterion here, viz. Le21
X X=Le21

Y Y ¼ 0:36; then

X=Y ¼ 1:2 and indeed, the reaction rate maxima for a string

lie on the lean side of the contour, Figs. 38 and 39.

The sublimit structures that can be generated in a plane

counterflow, whether premixed or non-premixed, are

cylindrical in nature. More generally, and specifically in

the case of a turbulent flow, we might expect to see an

ensemble of flame-balls, the spherical or near-spherical

counterparts. The implications for turbulent modeling of

lean hydrogen flames are clear: classical laminar flamelet

concepts must be modified to account for the ability of the

burning structures to adopt highly curved forms which resist

quenching.

12. Oscillating edges

Oscillating edge-flames in which the edge advances and

retreats have long been observed in a number of experi-

mental configurations. For example, when a flame spreads

over a liquid fuel-bed, Fig. 1a, the speed U with which the
Fig. 38. Reaction-rate contours for a single string in a two-string

configuration, D ¼ 122; 499; from Ref. [61], with permission.

Fig. 39. Contours of X=Y corresponding to Fig. 38. The intersection

of the broken lines identifies the locations of the reaction-rate

maxima, and these lie on the fuel-lean side of X=Y ¼ 1:2; from Ref.

[61], with permission.

Fig. 37. Fuel (solid) and oxydizer (dotted) concentration contours

for a stationary array of strings generated by the counterflow of

diluted hydrogen with air, D ¼ 1:89686 £ 105; from Ref. [61], with

permission.
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flame advances is usually a constant, Uo say. But there are

circumstances in which U fluctuates with time, viz.

U ¼ Uo þ U0ðtÞ

where U0 is periodic. The oscillations are notably non-linear

and each period of oscillation is characterized by long

intervals of modest motion (U 0 small) punctuated by bursts

of rapid advance (U 0 large). It has long been believed that

during the ‘rest’ phase the flame is essentially a diffusion

flame, whereas during the advance it has the characteristics

of a deflagration. The oscillations occur under reduced

flame-strength conditions, a reduction obtained, for

example, by lowering the liquid pool temperature so that

the vigor of the evaporation is reduced.

Edge-flame oscillations are also seen in other flame

configurations. The microgravity candle flame, Fig. 1b,

oscillates prior to extinction, extinction brought about by a

growing oxygen deficiency through confinement. The edge

retreats and advances with negligible side movement of the

flame-sheet, the oscillation growing in amplitude until the

flame is pinched off at the top. Five oscillations or so were

seen in the Shuttle experiments, 90 or so in the Mir

experiments, presumably a result of different confinement

volumes.

Oscillations are also seen in the configuration of Fig.

1g when conditions are close to blow-off [8,9]. Also, if

PMMA cylinders are burnt in a convective flux of air,

extinction at the front stagnation point (a local stretch effect)

creates twin flame edges which retreat and advance several

times [64].

In the context of flame-spread over liquids, this

phenomena has been captured in numerical simulations,

and various explanations have been proposed. One links the

oscillations to a gas-phase eddy [65]; the other to Marangoni

instabilities [66]. We shall not discuss them here since they

have more to do with flame-spread5 than edge-flames, but it

seems likely that at least for the oscillations observed in

flame spread when the atmospheric nitrogen is replaced by

helium [1] the Lewis number mechanism that we shall

describe in this section is the likely cause, as no oscillations

of the liquid are observed.

We shall discuss a model, proposed in Ref. [70], which

contains ingredients common to all the configurations in

which oscillations are observed, and we shall describe

oscillating solutions admitted by this model.

All of the configurations have two common character-

istics: near limit combustion, and fuel Lewis numbers

significantly greater than 1. (We have the estimates Lefuel <
1:5 for a flame spreading over propanol, Lefuel < 2:5 for

candle vapors, Lefuel < 1:6 for PMMA vapors, Lefuel < 1:4

for ethane, and Lefuel < 1:3 for methanol.) Furthermore, in

all of the configurations the flame-edge is, in some sense,

anchored. For the candle flame the base of the wick marks

the end of the vapor source, and so is an anchor point. For

the problem of fuel injection through a plate the upstream

edge of the injection region defines an anchor. For a flame

spreading over liquid the flame creates its own anchor at the

leading edge, constrained by the heat transfer/evaporation

processes which generate the fuel vapor. (There is no anchor

for propagation above the flash-point.)

The model contains all three characteristics, and they are

probably necessary for the generation of oscillating

solutions, although a definitive claim would be unwise.

Certainly the counterflow diffusion flame can be weakened

by reducing D, and a large fuel Lewis number can be

adopted, but these choices merely lead to a rapid retreat of

the edge as a failure wave and, as we shall see, negative

edge-speeds tend to suppress oscillations. By anchoring a

flame, negative edge-speeds can be prevented prior to blow-

off or detachment.

The model configuration is sketched in Fig. 40 and

consists of an oxygen-supply boundary at x ¼ 2ð1=2Þ;

21 , z , þ1; and a fuel-supply boundary at x ¼

þð1=2Þ; 0 , z , þ1: The remainder of the upper wall

(x ¼ þð1=2Þ; 21 , z , 0) supplies neither oxygen nor

fuel, although it can be a sink of both since Dirichlet

data are used, rather than flux conditions. The point z ¼ 0;

x ¼ þð1=2Þ corresponds to a soft anchor, an attachment

point for a flame that lies nominally in z $ 0: It is less

constraining than a hard anchor (e.g. a cold splitter plate on

the line x ¼ 0; z , 0), in the spirit of the experimental

anchors.

The combustion field within the walls is governed by the

5 The problem of flame-spread has been extensively studied, both

theoretically and experimentally. The review of Wichman [67] is a

fine discussion of the early history of the problem for a solid fuel-

bed, starting essentially with the thesis of deRis [68]. The slightly

later review by Ross [1] for a liquid fuel-bed brings up to date an

earlier review by Glassman and Drier [69]. Much has been learnt

over the past 30 years, particularly since the inception of

microgravity studies.

An essential characteristic of flame spread, whether it occurs over

a solid or over a liquid whose temperature is below the flash-point

temperature is that heat generated at the flame is carried ahead of the

flame by various mechanisms, heats the bed, and thereby generates

the gaseous fuel necessary to support (with the surrounding

atmosphere) what is, in nominal terms, a diffusion flame. The flux

of heat can arise from one or more of the following mechanisms:

gas-phase conduction, condensed-phase conduction, gas-phase

convection, liquid-phase convection, radiation. Marangoni forces

play an important role in the liquid convection.

The forward portion of the diffusion flame, near the surface, is

quenched; there is a dead space between the surface and the region

where chemical reaction is first significant. Thus the flame has an

edge, and this edge structure can display some of the characteristics

of edge-flames. As long ago as 1968 deRis [68] argued that the edge-

structure should be tribrachial in nature, although in his famous

analysis of the spread problem, this feature is suppressed by the core

approximations. It is now well recognized that the details of the

combustion field in the neighborhood of the edge play a crucial role

in determining the spread rate.
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equations

›

›t
þ V

›

›z

� �
¼ 72 X;

Y
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; T
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þ 2
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2
;2

1

2
; 1

� �
DXY e2u=T

; ð85Þ

where it is assumed that LeX ¼ 1: V is the speed of an

applied convective flow in the z-direction.

These equations have a 1D (x-dependent) solution,

multivalued provided the activation energy u is large

enough. The weak solution, assuming reaction is negligible

at the temperature To; is

X ¼ Xo
1
2
2 x

� �
; Y ¼ 0; T ¼ To: ð86Þ

The strong solution can only be constructed numerically, but

its fast-chemistry ðD !1Þ approximation is

2
1

2
, x , xp : X ¼

Xoðxp 2 xÞ

1

2
þ xp

� � ; Y ¼ 0;

T 2 Tbs ¼ 2ðTbs 2 ToÞ
ðxp 2 xÞ

1

2
þ xp

� � ;

xp , x ,
1

2
: X ¼ 0; Y ¼

Yoðx 2 xpÞ

1

2
2 xp

� � ;

T 2 Tbs ¼ 2ðTbs 2 ToÞ
ðx 2 xpÞ

1

2
2 xp

� � ;

ð87Þ

where

xp ¼
0:5ðXoLeY 2 YoÞ

ðYo þ XoLeY Þ
ð88Þ

is the flame-sheet location, and

Tbs ¼ To þ
2XoYo

Yo þ XoLeY

ð89Þ

is the flame-temperature. The frozen solution (86) provides

boundary conditions at the left computational boundary, and

the Burke–Schumann solution (87)–(89) provides an

approximation to the boundary conditions at the right

computational boundary. The exact conditions at the hot

boundary are obtained numerically, and only exist if D is

greater than a 1D quenching value De that is Lewis number-

dependent. Fixed parameter values are Xo ¼ Yo ¼ 1; To ¼

0:15385:

12.1. Results

Consider first the choice V ¼ 0; LeY ¼ 1:8; for various

values of D. Fig. 41 shows the 1D (hot-boundary) response,

with De < 0:55 £ 107; defining the S(tatic) Q(uenching)

P(oint). A second Damköhler number of significance, also

marked on the figure, is DNSP < 1:01 £ 107; the 2D (edge-

flame) stability boundary. For D . DNSP; solution of the 2D

problem leads, following initial transients, to a stationary

edge-flame, but for an interval DDQP , D , DNSP ðDDQP <
0:875 £ 107Þ oscillating (limit cycle) solutions are gener-

ated, which also define points in the response. Fig. 42 shows

time variations of T at z ¼ 0:75; x ¼ 0:08 for various values

Fig. 40. The model configuration used for the investigation of oscillating edge-flames.

Fig. 41. Response for LeY ¼ 1:8; U ¼ 0: SQP is the static quenching

point defining what elsewhere we label De; NSP is the neutral

stability point for the edge-flame oscillations: (—) 1D response;

( p ) 2D oscillating solutions, from Ref. [71], with permission.
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of D, two of them greater than DNSP; two less. The fourth

panel, for D ¼ 0:9 £ 107; hints at an extensive rest phase

interrupted by a sharp excursion during each period, and this

becomes clear when the flame position and speed are plotted

against time. This is done in Fig. 43 for slightly different

parameter values (LeY ¼ 2; D ¼ 1:6 £ 107), over a complete

period. The edge drifts slowly backwards in the interval

(2,4), advances rapidly in the interval (4,4.4), and then again

retreats slowly. During the retreat the structure is that of a

rounded diffusion flame-sheet, with maximum reaction rate

18 or so, Fig. 44. But during the advance the edge is

characterized by a tribrachial structure with a maximum

reaction rate greater than 100, Fig. 45.

Returning to the response of Fig. 41, when D is reduced

below DDQP the 2D solution fails, and the flame retreats to

the hot boundary where it only survives because the

boundary is an ignition point. DDQP is a dynamic quenching

point for the 2D solution.

The important role of the Lewis number is revealed by

examining the case U ¼ 0; LeY ¼ 1:5: Here DSQP <
0:25 £ 107: No instabilities are seen for any D, but there is

a critical value DIDP < 0:48 £ 107; below which failure

occurs and the flame detaches from the anchor, retreating to

the hot boundary.

The following general conclusions can be drawn. A

reduction in the Damköhler number weakens the 1D (hot-

boundary) flame, eventually extinguishing it, but the 2D

edge-flame is more vulnerable and is extinguished earlier.

Provided the Lewis number is large enough, the edge-flame

displays sustained oscillations for Damköhler numbers close

to the quenching value.

12.2. Effects of V

We turn now to the effects of the convective flux in the

Fig. 42. Temperature history at z ¼ 0:75; x ¼ 0:08 for LeY ¼ 1:8;

U ¼ 0; D ¼ 1:1 £ 107; 1.02 £ 107, 1.0 £ 107, 0.9 £ 107, from Ref.

[71], with permission.

Fig. 43. The front position (W) and approximate speed ( £ ) in the time interval [2.1,4.9], LeY ¼ 2; D ¼ 1:6 £ 107; from Ref. [70], with

permission.
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Fig. 45. Edge-flame during the rapid advance phase, from Ref. [70], with permission. Panel notation is that of Ref. [70].

Fig. 44. Edge-flame during the slow retreat phase, from Ref. [70], with permission. Panel notation is that of Ref. [70].

J. Buckmaster / Progress in Energy and Combustion Science 28 (2002) 435–475 465



z-direction [71]. A working hypothesis, consistent with the

experimental record and with the results that we have just

described, is that weakening the flame encourages edge

oscillations, whereas strengthening the flame discourages

them. A positive V convectively cools the edge without any

compensating enhancement in the fuel flux (since there is no

fuel supply in z , 0) and so is a weakening influence. A

negative V, on the other hand, bathes the edge in hot

reactants, strengthening it. We expect then, a destabilizing/

stabilizing effect according to whether V is positive or

negative.

Fig. 46 shows results for which an established stable

flame with V ¼ 0 is destabilized when V is increased to 1;

and Fig. 47 shows a flame that is unstable when V ¼ 0 but is

stabilized when V is decreased to 21.

Again the Lewis number must be large enough. When

LeY ¼ 1:5; D ¼ 0:5 £ 107; an increase in V from zero leads

to blow-off without any intervening oscillatory stage.

The values of V experienced by an edge-flame vary

greatly, depending on the circumstances. In the case of

flame-spread over a fuel-bed, where one of the components

of V is self-induced, this component is much smaller for a

solid bed (slow spread rate) than it is for a liquid. In a

gravitational field, V will have a buoyancy-induced

component absent in a microgravity environment. When a

forced convective flow is applied there will often be a

boundary-layer associated with this flow, and the contri-

bution to V then depends on the location of the edge within

this boundary layer. Thus whether in reality one sees

oscillations driven by the physics implicit in the present

model is not dependent merely on the values of Lewis

number and Damköhler number.

Moreover, although our discussion has emphasized the

importance of the Lewis number, and it is natural to think of

the oscillations as Lewis number-induced ðLe . 1Þ; in the

same way that we think of oscillations for large Lewis

number deflagrations, e.g. [72], it should be noted that ‘large

Lewis number oscillations’ can be generated for 1D flames,

both deflagrations and diffusion-flames, when the Lewis

numbers equal 1. The key to the instability is not so much

that a Lewis number is different from 1, but rather that the

thermal field and an appropriate species field are non-

similar, and this can come about via heat losses, which affect

only the thermal field. Thus it has been shown theoretically

[73,74] and experimentally [75] that heat loss to a burner

can destabilize 1D deflagrations even when the Lewis

Fig. 46. Destabilization of an edge-flame by an on-edge convective flow. The temperature history at z ¼ 1:0; 1.5, 2.0; x ¼ 0:08 is shown,

LeY ¼ 1:7; D ¼ 0:75 £ 107; U ¼ 0; 1; from Ref. [71], with permission. Panel notation is that of Ref. [71].
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number of the deficient component of the mixture is 1; and it

has been shown theoretically [76] that volumetric heat

losses can destabilize a 1D diffusion flame even when the

Lewis numbers of both the fuel and oxidizer are equal to 1.

By default, the rubric ‘large Lewis number instabilities’ is

typically assumed to encompass these examples. The lesson

for edge-flame studies is that it is conceivable that

oscillations could be generated even if all relevant Lewis

numbers are equal to 1, and, indeed, recent work on a

Burke–Schumann configuration with radiation losses (in

addition to the losses to the burner rim) provides an example

[77].

12.3. Effects of a cold probe

Insertion of a cold probe into the combustion field in the

neighborhood of the edge will weaken it; and, bearing in

mind the preceding discussion, it will also increase the

dissimilarity between the T-field and the Y-field. Thus

oscillations are encouraged and, indeed, such an effect was

seen during candle-burning experiments on board the Mir

space station. To model such a disturbance, we first create a

steady 2D combustion field. Then, within a rectangle

½z1; z2� £ ½x1; x2�; we adjust the temperature at each mesh

point ðzi; xjÞ according to the formula

Tij ¼ To þ ½Tij 2 To�e
2t=l

: ð90Þ

Fig. 48 shows the consequences of this when LeY ¼ 1:7;

D ¼ 0:75 £ 107; l ¼ 1 and the rectangle is [0,1.5] £

[20.1,0.1]. The temperature within the rectangle is

significantly reduced by t , 1–2 and on this scale the

flame shrinks from the probe, pulling back a distance 1 or so,

a retreat that is complete by t ¼ 6: Subsequently ðt . 10Þ

small oscillations commence, grow, and a limit cycle is

established by t < 30:

13. Ronney’s experimental studies

Edge-flames, in both the premixed [34] and non-

premixed [78] context, have been studied by Ronney and

his coworkers using a slot counterflow apparatus with,

literally, a twist, Fig. 49. By misaligning the nozzles by a

few degrees, a rate-of-strain gradient is generated across the

width of the slot, and the parameters (flow-rate, reactant

concentrations, etc.) can be adjusted so that where the

nozzle separation is greatest the Damköhler number is

greater than the zero edge-speed value D0; and where the

Fig. 47. Stabilization of an edge-flame by an off-edge convective flow. The temperature history at z ¼ 1:0; 1.5, 2.0; x ¼ 0:08 is shown,

LeY ¼ 1:8; D ¼ 107; U ¼ 0; 21, from Ref. [71], with permission. Panel notation is that of Ref. [71].
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nozzle separation is least the Damköhler number is less than

D0: Consequently, the flame can exist over a fraction of the

width only, and an edge-flame is created. If we assume that

the gas flow across the width is small, whether generated by

the misalignment or by pressure gradients linked to the non-

uniform heating, the edge-speed will essentially be zero and

the strain at the edge will define the watershed Damköhler

number D0:

If the densities of the two flows are equal, and each efflux

is uniform, a global strain rate can be defined by the formula

sðzÞ ¼
Vupper þ Vlower

dðzÞ
ð91Þ

where d is the separation distance, and z is measured across

the width. The strain rate will vary through the combustion

field of course, due to thermal expansion, and the only

apparatus-independent measure is unavailable, as it is

defined by cold gases on a scale large compared to the

flame thickness, so that Eq. (91) is used by default. The same

difficulty arises for aligned nozzles.

Typical results for non-premixed edge-flames are shown

in Fig. 50 for a stream of O2/He impinging against a stream

of C3H8/He, with the injection speeds fixed at 10 cm/s. The

C3H8/O2 ratio is fixed at 10, and the amount of He diluent is

varied to vary the mole percent of fuel. The aligned-jet data

points define extinction strain rates for the 1D flame, and so

define De as a function of fuel concentration. The

misaligned-jet data, misalignment-independent in the

range 2.86–4.51 degrees, define variations in D0 for the

edge-flame. (These are large Lewis number supplies (3.55

for C3H8/He, 1.69 for O2/He) but no oscillations are

observed perhaps because the video parameters do not

permit the capture of oscillations greater than 15 Hz.)

Observations for premixed configurations (single flame

or twin flame) reveal flame shapes of the kind shown in Figs.

17 and 21. Of the various mixtures examined (CH4/O2/CO2

with Le ¼ 0:6; CH4/air with Le ¼ 0:9; C3H8/air with Le ¼

1:7; C3H8/O2/He with Le ¼ 3) only the propane mixtures in

the twin-flame configuration show differences between De

and Do which are significantly larger than either the scatter

or the variations due to misalignment variations. It does

not follow, however, that edge-flame extinction will only

occur for local strain comparable to the 1D quenching

value. Once an edge is created in a region of high strain it

can be carried as a failure wave into a region of lower strain

by a sufficiently strong gas flow parallel to the sheet.

Undoubtedly this is what is happening in the sublimit

configuration of Fig. 1e.

Fig. 48. Destabilizing effect of a heat sink. The temperature history at z ¼ 2:0; 2.15, 2.25, 2.5; x ¼ 0:08 is shown, sink (cf. Eq. (90) at

[0,1.5] £ [20.1,0.1], from Ref. [71], with permission. Panel notation is that of Ref. [71].
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For CH4/O2/CO2 mixtures, twin flames, cellular struc-

tures are observed at small strain, but not at large strain,

which is consistent with the observation in Ref. [48] that

sublimit structures exist for Le ¼ 0:5; but not for Le ¼ 0:7:

For the same mixture, single-flame cellular structures are

seen for all non-extinguishing strains, probably a conse-

quence of heat loss to the inert stream, as it is known that

heat losses encourage the cellular instability [79].

Fig. 32 is typical of the sublimit structures (here a single

string and a double string) observed in the experimental

study at low Le, both for premixed and non-premixed

configurations.

14. Oscillating premixed edge-flames

Consider a narrow deep slot of width 2L through whose

opposite faces a combustible mixture is injected, with speed

v0 (.0). The gases travel towards the open end of the slot,

and their motion creates a plane straining flow, defined when

the gas density is constant by the rotational Proudman–

Culick solution [80,81]

v

v0

¼ 2sin
p

2

y

L

� �
;

u

v0

¼
p

2L
x cos

p

2

y

L

� �
; ð92Þ

where x is measured along the slot axis, y is measured

perpendicular to the axis, and ðu; vÞ are the velocity

components. (Note that this is the constant density solution

relevant to the plane counterflow between two nozzles with

plug flow conditions at the nozzle exit planes).

This configuration has been studied experimentally [82]

in the context of HMX propellants (then the injection is

associated with pyrolysis of the propellant), and has been

modeled numerically [83]. In both cases, twin deflagrations

can be supported with some kind of edge structure near

the closed end of the slot. In certain circumstances, the

experiments reveal an oscillating instability (advancing and

retreating edge), and the numerical work [83] pursues the

hypothesis that this is a Lewis number effect, as for the non-

premixed edge oscillations that we described earlier. And

indeed, oscillations are reported only for sufficiently large

Fig. 49. The edge-flame experimental apparatus of Ronney, from

Ref. [34], with permission.

Fig. 50. Experimental data for a counterflow of oxygen/helium with propane/helium, from Ref. [78], with permission. Filled points, De; open

points, D0 for various misalignment angles.
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Lewis numbers, and for Damköhler numbers (controlled by

the rate of strain v0=L) close to the limit (extinction) value.

15. Edge-flames and turbulence

Non-premixed turbulent combustion is an important

subject, long studied. Although much of the burning occurs

within diffusion flames, or flamelets, local destruction of a

flamelet leads to reactant mixing, and the mixture generated

can, in due course, be ignited. The earlier discussion of holes

in diffusion flames is relevant if one pictures a distorted

wrinkled diffusion flame in which holes are torn when the

local scalar dissipation rate x ¼ 2Dl7Zl2stoich: exceeds

the quenching value xe; but heal by inward propagation of

the edge when x, a stochastic variable, subsequently drops

below x0 or thereabouts, depending on the size of the hole.6

Lifted flames have long been studied as a framework in

which it is hoped that important insights into the physics of

non-premixed combustion can be achieved.

At its simplest level, the problem of a lifted flame is the

determination of where and how the flame-base is stabilized,

as for laminar lifted flames. But the turbulent problem is

much more difficult because of the difficulty of identifying

the ingredients which affect the speed of the flame-base

(edge), and of determining their quantitative impact.

There are two old theories of lifted turbulent flames, both

advanced before the concept of edge-flames was estab-

lished, and before modern diagnostic tools were developed

which permit a detailed determination of the combustion

field in the neighborhood of the base.

The earliest is the proposal by Vanquickenborne and van

Tiggelen [84] that full mixing at the molecular level occurs

upstream of the flame base, which is, accordingly, a

deflagration that travels at the turbulent flame-speed, one

significantly greater than the laminar flame-speed So:

In contrast, Peters [5] focuses on the diffusion flame that

trails downstream of the flame base and argues that

upstream of the base the flame cannot exist, whereas

downstream it can. From this point of view, xe plays an

important role. The mean value of x first increases with

distance from the burner as the turbulent intensity grows,

and then decreases because of dissipation, and it is argued

that the flame base is stabilized in this second region. The

precise location is defined by the idea that upstream of the

base x is greater than xe often enough and in a large enough

fraction of the combustion field that the diffusion flame

cannot survive.

As we noted, both theories were proposed before the

concept of edge-flames was established. We can link the

deflagration concept of Ref. [84] to edge-flames by

supposing that the deflagration comprises the two branches

of a large Damköhler number tribrachial flame, branches

that are subject to stretch and to wrinkling.

On the other hand, trying to place the second theory [5]

in the edge-flame context immediately presents difficulties.

Propagation is an essential characteristic of an edge-flame,

and yet this plays no role in the theory. Moreover, when

x , xe the edge-speed is negative and yet the flame-base

must, on average, have a positive speed relative to the fluid:

thus x0 would seem more to the point than xe:

Both theories, by focusing on the extremes, highlight the

duality of edge-flames. If one thinks of stretch effects

(relevant to deflagrations) and scalar dissipation effects

(relevant to diffusion flames) in steady laminar flames of the

kind that we have examined, both can be related to a single

parameter, the Damköhler number. But in unsteady flows,

such as turbulent flows, this simple connection is broken: the

local instantaneous stretch is defined by local velocity

gradients and flame curvature; the scalar dissipation rate is

defined by the instantaneous balance of the various terms in

the equation for the scalar Z. The theory of Ref. [84] thinks

of the edge-flame purely in terms of its deflagration

structures; the theory of Ref. [5] thinks of the edge-flame

purely in terms of its trailing diffusion flame.

As also we noted earlier, these early theories were

advanced before the development of modern diagnostic

methods, and these have now provided crucial insights. For

example, the scalar dissipation rate near the flame-base is

much smaller than xe [85] and for this, and other reasons,

there is now a consensus that the scalar dissipation theory is

not correct [86], an unfortunate example of a charming

theory undone by the facts.

Although the gas speed at the mean flame-base position

can be as large as 25So, the gas speed at the instantaneous

position is no more than 3So [87]; moreover, a co-flow

greater than 3So causes flame blowoff. And although mixing

is complete upstream of the base, the mixture conditions at

the base do not correspond to the maximum flame-speed

[88]. These observations are not consistent with the

turbulent deflagration theory.

Indeed, it would appear that the flame base is essentially

a laminar edge-flame, albeit one influenced by a number of

ingredients absent in a laminar flow field. Thus Muñiz and

Mungal [89] established that the velocity field near the base

is comparable in structure and magnitude to what one would

expect from the laminar calculations of Ref. [41]. What

precisely stabilizes the edge is uncertain however, as there

are a number of ingredients that could affect the speed. The

list includes stretch, curvature, the scalar dissipation rate,

mixture-strength intermittancy, and transport of burnt gases

ahead of the edge via large scale eddies. A rational

description that could account for all of these effects in a

quantitatively accurate fashion seems unlikely.

What can be done, of course, is an investigation of some

of these ingredients in other contexts. Thus Refs. [90,91] use

a numerical strategy to examine what happens when an

edge-flame, initially exhibiting a strong tribrachial structure,

6 In the general context, x plays the role that the rate of strain a

plays for laminar counterflow flames, and so the Damköhler number

, 1=x:
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propagates between twin counter-rotating vortices, which

generate an unsteady non-uniform flow field. In Ref. [91]

the edge-speed relative to the fluid is shown to correlate with

a locally calculated Karlovitz number, but not with the

scalar dissipation rate.

16. Edge-flame holding

Sections 8 and 15 have something to say about flame-

holding, but only in local gradients. Of a different nature is

holding near walls. Fuel and oxidizer streams separated by

an infinitesimally thick, semi-infinite splitter plate define a

configuration of some importance, one that is discussed in

Ref. [92].

Let us first consider the flow sans combustion. Upstream

of the plate edge there are Blasius boundary layers in which

the two flows satisfy the no-slip condition at the plate. The

jump in boundary conditions at the plate edge creates a wake

in which the gas speed along and in the neighborhood of the

detachment streamline increases with distance (z ) as the

velocity field more and more resembles the similarity

solution for a shear layer. When the Reynolds number based

on a length comparable to the two boundary layer

thicknesses at the plate edge is large, the evolution of the

wake has well-defined structural components. Most notably,

there is a triple-deck structure in the neighborhood of the

edge, and this transitions to a Goldstein wake. In the inner

region of the Goldstein wake, the streamwise velocity grows

like x1=3: Both in the triple deck and the Goldstein wake

streamwise diffusion is negligible, and for subsonic flow an

upstream influence is generated only because the external

inviscid flow field is displaced via the displacement

thickness, a quantity that is a decreasing function of z

behind the plate edge. (In supersonic flows, discussed in a

combustion context by Jackson [93], there is no upstream

influence at all.)

On a much smaller scale than that of the triple-deck there

is a Navier–Stokes region at the very edge itself. This is

usually ignored, since the triple deck can be discussed

independently, but in a combustion context it is precisely the

region where a flame edge will be located that can lose heat

to the plate. Should the flame edge move out of the Navier–

Stokes region into the triple deck or Goldstein wake, it will

be controlled by local gradients in these regions, and not the

plate.

Following ignition and the establishment of a flame, the

flow field that we have described will be modified, but the

broad details still provide a meaningful framework within

which to discuss the combustion field.

It is helpful (but not necessary) to discuss the results of

Liñán [92] in the context of the 1D model, and for this

purpose we will examine Eq. (24) but with V replaced by

Csg ð0 , g , 1Þ; an accelerating flow, and with the

boundary condition T ¼ Tw at s ¼ 0: Not surprisingly, in

view of the earlier discussion, the choice D ¼ Oð1=13Þ leads

to relevant solutions (discussed in Ref. [94] when g ¼ 1:)

On this scale, there is a turning point in the D–sp plane (sp is

the reaction zone location) with no solutions for D less than

some minimum (blow-off) and two solution branches for D

greater than this minimum, Fig. 51. On the lower branch, sp
is a decreasing function of D, and this corresponds to stable

physically realizable solutions; the upper branch corre-

sponds to unstable solutions.

The mathematical description far along the upper branch

can be uncovered by writing

s ¼ sp þ
1

s
g
p

j; sp !1; ð93Þ

whence Eq. (24) becomes

C
du

dj
2

d2u

dj2
¼

Dð1 2 uÞ2

s
2g
p

exp
1

1
1 2

1

u

� �
ð94Þ

where u! uw as j!21: This problem is that of the

classical deflagration, and the instability here is merely the

static one: A shift of the flame downstream does not change

its speed but places it in a faster stream and so it is swept

away; a shift of the flame upstream places it in a slower

stream, and so it flashes back towards the plate. The usual

flame analysis for the stationary solution shows that

sp , ð13DÞ1=2g ð95Þ

(and so D must be large).

There is a third solution branch which can be called the

explosion branch as physically it corresponds to the

homogeneous explosion of the mixture as it is convected

Fig. 51. Solution branches for a non-premixed flame held behind a

thin splitter plate.
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downstream, and is described by the equation

Csg
du

ds
¼ Dð1 2 uÞ2 exp

1

1
1 2

1

u

� �
: ð96Þ

In the proper 2D context this was first discussed in Ref. [95],

where for the first time can be found a theoretical discussion

of a flame structure with the premixed and diffusion flame

branches that we now associate with flames in mixing

layers. This is not a tribrachial flame in the sense of this

review, however, as it does not have a well-defined

propagation speed, and any movement that it might display

corresponds only to the locus of the ignition point.

To identify the ignition point si from Eq. (96) we follow

Frank-Kamenetskii’s familiar strategy and write

u ¼ uwð1 þ 1uwfÞ; s12g ¼
t

B
;

B ¼

Dð1 2 uwÞ
2 exp

1

1
1 2

1

uw

� �
1u2

wCð1 2 gÞ
;

ð97Þ

whence

df

dt
¼ ef ð98Þ

with blow-up at t ¼ 1 so that

si ¼ B21=ð12gÞ
; ð99Þ

a decreasing function of D (Fig. 51). si is large and the

diffusion term justifiably neglected when B is small.

The explosion branch and the upper flame branch cross

where sp from Eq. (95) equals si, i.e.

D , 1
ð5g23Þ=ð1þgÞ exp

1

1

2g

1 þ g
21 þ

1

uw

� �
ð100Þ

when only the dependence on 1 is explicitly identified. For

sufficiently small 1 it is sufficient to look at the exponential

dependence and conclude that D is large and B is small, as

required.

Consider Fig. 51. Its significance is that, in principle, for

arbitrarily small D there is always an explosion solution

with the structure described in Ref. [95]. As D is increased,

the ignition point moves towards the plate until the cross-

over point A is reached. Then a propagating tribrachial

flame is generated which is either swept away or propagates

upstream until it reaches the position corresponding to B. A

subsequent decrease in D moves the solution along the

lower flame branch until blow-off occurs at C and an

explosion solution is reinstated at D.

There are clearly many ways in which this discussion

could be enlarged. It is noted in Ref. [93], for example, that

finite plate thickness effects can be important, an idea that is

pursued in the low Mach number context in Ref. [96].

17. A note on vocabulary

Contrary to the opinions of the occasional desk editor,

the matter of vocabulary is often a matter of personal taste,

although poor taste can lead to confusion. To use

‘compressible’ as a synonym for ‘variable density’ is no

longer a lexicographal error, since so many do it, but it is

certainly not helpful to those who wish to know if finite

Mach number effects are accounted for or not. I have

exercised certain personal choices in this review.

I have used ‘inflammable’ (rather than ‘flammable’)

since it is the word that I grew up with, and is still widely

used outside of the combustion community, albeit less so

than, say, 10 years ago. It is with some alarm that I notice

that Stephen Pyne, in one of his fascinating books on natural

fires, and the way they have shaped the world and us, uses

(at least once) inflammable to mean that which cannot burn.

Apparently the word runs the risk of becoming a Janus word,

like sanction, one that can mean both one thing and its

opposite. Perhaps we need to occasionally acknowledge that

here the ‘in’ has no connection with negation.

What I call tribrachial flames are often called triple

flames. But ‘tribrachial’ can be found in the Oxford

Dictionary, and gives more sense of the morphology. For

those unaccustomed to reading in the life sciences however,

it can appear cumbersome. That aside, to use either label for

edge-flames without triple structures is silly.

Indeed, that is why the rubric ‘edge-flame’ was coined. It

is more general than ‘leading-edge-flame’ as edge-flames

sometimes follow. And it surely means something quite

different than a flame-edge. The distinction is as between a

forest-edge—merely the place where the trees end—and an

edge-forest, an ecotone with its own distinct biodiversity.

But chacun á son gout.

18. Concluding remarks

Flame-theory is an old subject with important roots in the

1928 work of Burke and Schumann on diffusion flames,

followed some dozen years later by the work of Darrieus,

Landau, Frank-Kamenetskii and Zeldovich on deflagrations.

A vast literature has emerged in the past 40 years. And so it

is remarkable that edge-flames have only been identified and

come to be reasonably well understood in the past dozen

years, for they are as fundamental and well-defined as the

1D structures that have been the bread and butter of

textbooks for decades.

Their roots probably lie in the 1980s when Peters was

writing of holes in diffusion flames [5] but as late as 1989

the triple-flame discussion by Dold [25], which looks over

its shoulder at the 1965 experimental report of Phillips [24],

seems merely a perturbation of the 1D deflagration. And

there is no evidence that this author is aware of that the triple

ignition structure described by Liñán and Crespo in 1976
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[95] was seen by anyone as a pathological version of a

propagating flame structure of universal significance,

although as we noted earlier, deRis recognized in his 1968

thesis [68] that the edge of a flame traveling over a fuel-bed

will have a branched structure.

Indeed, it is not until 1991, with the work of Dold and his

colleagues [29,30] that the essential nature of edge-flames

begins to emerge, and 1993 when the numerical work of

[17] makes this emergence apparent to those for whom

asymptotic treatments are not transparent. The linking of

edge-speeds (particularly negative ones) to well-known

results in 1D reactive systems [21,22], and the recognition

that edge-flames have their roots in multivalued 1D

responses [32,33], and not just mixing layers, completed

our conceptual understanding.

The subsequent literature has been concerned with

questions that have their counterparts in classical deflagra-

tion and diffusion flame studies—stability, the effects of

boundaries, heat losses, flow field gradients, unsteady

disturbances, etc. Undoubtedly, the latter efforts will

continue, particularly in a context that will improve our

understanding of turbulent flames. Also, since in principle

there are multi-valued 1D responses more complex than

those examined so far, it is possible that new edge-flame

structures will be identified in the future.
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