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Abstract
The focus of this article is on intrinsic combustion instabilities in
both premixed and nonpremixed systems, identifying, in particular,
the roles of differential and preferential diffusion, thermal expan-
sion, and heat losses. For premixed flames, the hydrodynamic insta-
bility resulting from thermal expansion plays a central role and is
particularly dominant in large-scale flames. It is responsible for the
formation of sharp folds and creases in the flame front and for the
wrinkling observed over the surface of expanding flames. In contrast,
instabilities in diffusion flames, which give rise to cellular and oscil-
lating flames, are mainly driven by diffusive-thermal effects, with
thermal expansion playing a secondary role. The discussion also in-
cludes instabilities of edge-flames in unmixed reactants, which pos-
sess stability characteristics of both premixed and diffusion flames,
but with a distinct mode of instability.
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1. INTRODUCTION

Flame instability appears in different forms and at different scales. Spontaneous os-
cillations of an otherwise stable jet diffusion flame occur when the fuel concentration
increases and the whole flame expands and contracts at a frequency of a few Hertz (Füri
et al. 2000). A nominally planar flame in an upward uniform flow of a combustible
mixture takes on a cellular appearance when varying the mixture composition, with
cells of 0.5–1 cm in size (Markstein 1964). The surface of a large expanding flame,
of magnitude 5–10 m in diameter, becomes spontaneously rough when it reaches a
critical size and takes on a pebbled appearance with small ripples of approximately 10–
50 cm covering its surface (Lind & Whitson 1977). Sustained pressure fluctuations
of acoustic nature are observed in combustion chambers where unsteady combustion
occurs. When occurring in practical systems these instabilities can be detrimental.
For example, they can create conditions that may cause damage and mechanical fail-
ure to the combustion device. In other situations, however, they may be favorable for
enhancing mixing and increasing burning rates.

This article focuses on intrinsic instabilities associated with the combustion pro-
cess itself that would result even if there were no surrounding with which the combus-
tion interacts. The subject has been covered at different depth in several articles that
appeared in this series (Buckmaster 1993, Clavin 1994, Sivashinsky 1983), and this
review attempts to complement these, focusing on topics not previously discussed or
where significant progress has been made in physical understanding. References are
only cited when directly relevant to the discussion, with no attempt to exhaustively
cover all the literature on the subject. Insightful information obtained from computer
simulations, for example, is not covered in depth and could be found in a recent review
by Kadowaki & Hasegawa (2005).

Combustion processes are usually classified as premixed or nonpremixed, depend-
ing on whether the fuel and oxidizer are well mixed initially or are supplied from dif-
ferent origins. One section in this article is concerned with premixed flames. Although
diffusive-thermal instabilities leading to cellular, polyhedral, and other multidimen-
sional patterns are briefly mentioned, the focus is on the hydrodynamic instability
resulting from thermal expansion, which has many ramifications in combustion. The
second section in this article is concerned with nonpremixed combustion, in partic-
ular diffusion flame sheets and edge-flames in initially unmixed reactants. Thermal
expansion does not play a crucial role in flame stability as it does in premixed flames.
Cellular structures, oscillations, and other competing modes of instabilities are pri-
marily driven by diffusive-thermal effects. Therefore, stability results are primar-
ily discussed within the context of a constant-density approximation. When density
variations are accounted for, these results are only slightly modified with thermal
expansion acting to further stabilize or destabilize the flame depending on the mode
of instability. The distinction between premixed and diffusion flames is not always
retained in reality. In practical systems, where the fuel and oxidizer are supplied in
two separate streams, it is often advantageous to run at high flow rates and stabilize
the flame further downstream within the jet. Lifting the flame base off the burner
has the advantage of avoiding thermal contact between the flame and the rim and
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enhancing mixing in the dead space. The disadvantage is that the resulting edge-
flame is subjected to instabilities and possible blow off. Stability results have so far
been based on a constant-density model. The primary mode is oscillations, but un-
like diffusion flames, which oscillate in a direction normal to the reaction sheet, an
edge-flame moves back and forth along the stoichiometric surface and the oscillations
decay further downstream along the trailing diffusion flame.

2. PREMIXED COMBUSTION

2.1. The Darrieus-Landau Instability

In purely theoretical analysis, Darrieus (1938) and Landau (1944) predicted indepen-
dently that planar deflagrations are unconditionally unstable. This result was pub-
lished nearly 65 years ago despite the fact that stable planar laminar flames have been
observed in the laboratory since the pioneering work of Mallard & le Chatelier (1883).
The Darrieus-Landau (DL) theory assumes that the flame is infinitesimally thin and
propagates normal to itself at a constant speed SL relative to the cold unburnt gas,
unaffected by hydrodynamic disturbances. Within this framework, the linear stability
of a planar flame yields

ω = SLk ωDL, ωDL ≡ −σ + √
σ 3 + σ 2 − σ

σ + 1
, (1)

where ω is the growth rate, k is the transverse wave number, and σ ≡ ρu/ρb is
the unburnt-to-burnt density ratio, or thermal expansion parameter. For exothermic
chemical reactions σ > 1, the growth rate ω > 0 for all wave number k, resulting
in instability. The DL result, also known as the hydrodynamic instability, is a con-
sequence of the gas thermal expansion. Indeed, ω increases with increasing σ and
vanishes as σ → 1. From Equation 1 we also see that ω is proportional to the wave
number k, implying that wrinkles of short wavelength grow faster than wrinkles of
long wavelength. This result, however, is not valid for short wavelength disturbances
that are comparable to the flame thickness, because these may induce distortions of
the flame structure that were not accounted for in the DL description. Diffusion
processes within the flame often have stabilizing influences that may overcome the
destabilizing effect of thermal expansion. For example, the surface of an outwardly
propagating lean butane-air flame remains spherical and smooth in the early stages
of propagation. This is in sharp contrast to a lean hydrogen-air flame, which at a
comparable time appears inherently unstable (Strehlow 1984, pp. 428–29). In large-
scale flames, however, the hydrodynamic instability is always present. It is responsible
for the roughened surface observed on the surface of expanding flames and for the
continuous wrinkling of the flame surface (Strehlow 1984, p. 432). The formation
of multiple sharp crests pointing toward the burnt gas for flames attached to burn-
ers (Uberoi et al. 1958) and the sharp folds and creases observed on the surface of
premixed flames in low-intensity turbulent flows (Sattler et al. 2002) are additional
manifestations of the hydrodynamic instability.
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The DL result can be easily extended to account for gravitational forces (Landau
1944). In this case, the dispersion relation yields

ω =
−σ +

√
(σ 3 + σ 2 − σ ) − (σ 2 − 1)(g/S2

Lk)

σ + 1
SLk,

where g is the gravitational acceleration. For a planar flame in an upward uniform
flow, corresponding to downward propagation (g > 0), disturbances with wavelength
λ > 2πσ S2

L/g are damped out by gravitational forces.1 Gravity, therefore, acts to
stabilize the long wavelength disturbances, and its influence is over a wider range of
wavelengths for slow flames. Short wavelength disturbances, however, remain hydro-
dynamically unstable.

2.1.1. Hydrodynamic theory of flame propagation. A great deal of work has been
done in the past 60 years to improve the DL model by incorporating the effects of the
diffusion processes within the flame zone in the mathematical description. Notable is
the study of Markstein (1964), who assumed a dependence of the flame speed on the
local curvature of the front through a phenomenological constant that has become
known as the Markstein length (or Markstein number, when expressed in units of
the diffusion length). The more rigorous asymptotic treatment of Clavin & Williams
(1982) and Matalon & Matkowsky (1982) exploits the multiscale nature of the problem
characterized by two disparate length scales: the diffusion length lf representing the
flame thickness, where lf = Dth/SL withDth the thermal diffusivity of the mixture, and
the hydrodynamic length L associated, for example, with the average size of the wrin-
kles on the flame front or with the geometrical dimensions of the combustion vessel.
The theory has since been extended to account for density variations, effects of differ-
ential and preferential diffusion with temperature-dependent transport coefficients,
and effects due to stoichiometry and arbitrary reaction orders (Matalon et al. 2003).

Viewed on the hydrodynamic scale, the whole flame, where heat conduction,
species diffusion, viscous dissipation, and chemical reactions occur, is considered a
sheet separating the fresh combustible gases from the hot products. By resolving the
internal flame structure on the much smaller diffusion scales, appropriate conditions
for the velocities and pressure across the flame are obtained as matching conditions.
In addition, an expression for the flame speed defined as the normal velocity of the
unburnt gas relative to the sheet is obtained in the form

Sf = SL − LK,

where L is the Markstein length and K the flame stretch. Flame stretch is a measure
of the flame front deformation resulting from its motion and nonuniformities in the
underlying flow field, and in the present approximation it can be expressed as the
sum of curvature κ and hydrodynamic strain Ks, namely K = SLκ + Ks (Matalon
1983, Matalon et al. 2003). The dimensionless parameter lfK/SL is often referred to

1For upward propagation (g < 0), gravitational forces always act to further destabilize the flame.
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as the Karlovitz number. The Markstein length is given by

L =
{

σ

σ − 1

∫ σ

1

λ(x)
x

dx + β(Leeff − 1)
2(σ − 1)

∫ σ

1

λ(x)
x

ln
(

σ − 1
x − 1

)
dx

}
lf,

where β is the Zel’dovich number, or activation energy parameter, Leeff is the effective
Lewis number of the mixture, and λ=λ(T) is the thermal conductivity of the mixture,
which depends solely on the temperature T. The effective Lewis number is a weighted
average of the individual Lewis numbers LeF and LeO representing the ratios of the
thermal diffusivity of the mixture to the mass diffusivities of the fuel and oxidizer,
respectively. It depends on the equivalence ratio in such a way that for fuel-lean
mixtures it reduces to LeF and for fuel-rich mixtures to LeO .

The resulting formulation is a nonlinear free-boundary problem supplemented
with conditions that describe the influences of the diffusion processes occurring within
the flame zone. The Markstein length, of the order of the flame thickness, is the
only parameter in the model that depends on the mixture composition through the
Lewis numbers. For hydrocarbon-air mixtures it is generally positive and decreases
monotonically as the mixture varies from lean to rich conditions. The opposite is true
for light fuels, such as hydrogen-air mixtures, where L decreases as the mixture varies
from rich to lean conditions and may even be negative in sufficiently lean mixtures.
Despite its relative simplicity, the hydrodynamic model exhibits a complex interaction
between the flame and the surrounding gas. It was used in simple circumstances to
examine the nature of the flow induced by thermal expansion, such as the displacement
effect caused by the flame (Eteng et al. 1986), and was found particularly useful in
studies aimed at examining the intricate nature of flame instabilities.

2.1.2. Planar flames. Reconsidering the linear stability of a planar flame, Pelce &
Clavin (1982), Matalon & Matkowsky (1982, 1984), and Frankel & Sivashinsky (1982)
derived a correction to the DL result of the form

ω = SLk ωDL − SLlf [B1 + β(Leeff − 1)B2 + Pr B3] k2,

that clarifies the role of diffusion on flame stability. Here Pr is the Prandtl number and
the coefficients B1, B2, B3, which depend solely on σ , are all positive. The three terms
multiplying lf correspond to thermal, molecular, and viscous diffusion, respectively.
Thermal diffusion, which tends to smooth out temperature differences, always has a
stabilizing influence. Due to the large change in viscosity across the flame, viscous
diffusion also has a stabilizing influence.2 On the other hand, the effect of molecular
diffusion depends on the mixture composition, or the effective Lewis number of the
mixture.

To ensure stabilization of the short wavelength disturbances Leeff must exceed
a critical value Le∗

eff
. If long wavelength disturbances are excluded, because of the

presence of walls in the transverse direction or as a result of the stabilizing influence of

2For a constant viscosity flow B3 = 0; the role of viscosity is then secondary to that of thermal and molecular
diffusion.
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gravity, a stable planar flame results. For Leeff < Le∗
eff

, however, the short wavelength
disturbances are also unstable and the hydrodynamic instability is enhanced by the
diffusive effects. A planar flame under such circumstances cannot exist, a limit referred
to as the diffusive-thermal instability. Proper description of the resulting cellular flame
requires including higher-order terms in the dispersion relation (Equation 2.1) for
short wave stabilization. This was explored for weak thermal expansion (Sivashinsky
1977) giving rise to a dispersion relation of the form

ω = 1
2

(σ − 1)SLk − 1
2

SLlf(Leeff − Le∗
eff

)k2 − 4Dthl2
f k4

with Le∗
eff

= 1 − 2β−1. The critical value Le∗
eff

is slightly less than one, but when
estimated from Equation 2.1 for realistic values of σ ≈ 6 it is much lower, rarely
exceeding 0.5. This makes most real combustion systems inaccessible to the instability
except perhaps for lean hydrogen-air flames.

The critical Lewis number Le∗
eff

increases when heat losses are incorporated in
the analysis and approaches one near the flammability limit ( Jackson & Kapila 1986,
Joulin & Clavin 1979). All flames with Leeff � 1 are then diffusively unstable at near
extinction.

The constant-density theory identifies another form of instability, a pulsating
mode, for mixtures with sufficiently large Lewis numbers (Sivashinsky 1983). Even
when the hydrodynamically unstable long wavelength perturbations are suppressed,
the predicted value of Leeff for the onset of oscillations is quite large and not readily
accessible for common combustible mixtures. The combined effects were recently
discussed by Class et al. (2003). The critical Lewis number, however, is significantly
reduced in the presence of heat losses, which explains the observed pulsations in
burner stabilized flames (Blackshear et al. 1984).

2.2. Spherically Expanding Flames

The onset of cells on spherically expanding flames more clearly illustrates the dis-
tinction between the diffusive-thermal and hydrodynamic instabilities.

When a combustible mixture is centrally ignited, an outwardly propagating spher-
ical flame develops. Due to the unsteady nature of the basic state, the stability anal-
ysis is not straightforward. First, the perturbed governing equations contain time-
dependent coefficients and thus do not admit normal mode solutions with exponential
growth. Furthermore, the notion of stability/instability must be accurately defined.
Because the flame is expanding, one can only speak of the instantaneous growth rate,
reflecting the tendency of the flame front toward stability or instability at a given
moment. If at a given instant a disturbance increases but the flame grows even more
rapidly, the disturbance appears to decay relative to the flame, thus implying stability.
Instability results when the disturbance grows at a faster rate than the flame. If under
certain conditions the flame is momentarily unstable for all times t > tc, an instability
results and will be observed in an experiment at a time larger than tc.

A theoretical description of the onset of instability in a spherically expanding
flame was given by Istratov & Librovich (1969), who considered a DL model with
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a Markstein correction, and later by Bechtold & Matalon (1987), who, based on
the hydrodynamic model, incorporated hydrodynamic and diffusive-thermal effects
in a more systematic way. More recently, the results were generalized to allow for
temperature-dependent transport coefficients and a wider range of equivalence ra-
tios (Addabbo et al. 2002). Let the spherical flame be expressed by r = R(t), the
propagation speed Ṙ, where the dot represents differentiation with respect to time,
is deduced from Equation 2. The perturbed front can then be expressed in the form
r = R(t) [1 + A(t) Sn(θ, ϕ)] , where A is the amplitude of the disturbance and Sn the
spherical surface harmonics with n as an integer. The growth rate is then given by

1
A

d A
dt

= Ṙ
R

{
ω̃DL − lf

R
[
B̃1 + β(Leeff − 1)B̃2 + Pr B̃3

]}
,

where the coefficients ω̃DL and B̃1, B̃2, B̃3 depend only on σ and n, and with the
exception of the low values of n they are all positive. Consistent with the hydrodynamic
description, this result is valid for R > R0 where R0 is the initial flame radius, which
is assumed larger than the diffusion length lf. The first term ω̃DL represents the
destabilizing effect of thermal expansion, whereas those multiplying lf represent,
respectively, the influences of thermal, molecular, and viscous diffusion.

When the right-hand side of Equation 5 is positive, which occurs when Leeff <

Le∗
eff

, the amplitude grows in time for all n starting at t = 0. In this case, the insta-
bility, which must have developed when the flame radius was smaller than the initial
radius R0, is diffusive-thermal in nature. Indeed, spherically expanding flames in rich
hydrocarbon-air or lean hydrogen-air mixtures, characterized by a Lewis number
sufficiently less than one, were observed to take on a cellular appearance shortly after
ignition (Manton et al. 1952, Palm-Leis & Strehow 1969).

When Leeff > Le∗
eff

, the right-hand side of Equation 5 for a given n changes sign
only when the flame reaches the critical size R = Rc. Thus, the amplitude decays
initially, reaches a minimum at time t = tc corresponding to Rc, and then increases
indefinitely in time. During the early stages of propagation the hydrodynamic in-
stability is suppressed because of the large curvature of the front, and since for high
Lewis numbers molecular diffusion exerts stabilizing influences on the short wave-
length disturbances, a smooth (stable) flame results. Indeed, in lean hydrocarbon-air
or rich hydrogen-air mixtures, the expanding flame remained smooth during the early
stages of propagation, but took on a cellular appearance once it reached a critical size
(Groff 1982, Simon & Wong 1953). In this case, the instability is hydrodynamic in
nature, triggered by thermal expansion effects.

Figure 1 shows the development of spherically expanding hydrogen-air and
propane-air flames for lean and rich mixtures at different pressures (Law 2006). The
experiments were carried out in a spherical bomb, carefully designed to maintain a
nearly constant pressure. At five atmospheres the rich propane-air (φ = 1.4) and lean
hydrogen-air (φ = 0.6) flames are diffusively unstable because the effective Lewis
number is below one in both cases. The instability seems to form shortly after igni-
tion, namely when the flame size is sufficiently small and comparable to the flame
thickness. In contrast, lean propane-air (φ = 0.7) and rich hydrogen-air (φ = 4.0)
flames at five atmospheres remain stable for a significant time after ignition. Because
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Figure 1
Observation of spherically expanding propane-air and hydrogen-air flames for various
pressures and equivalence ratios φ. At 5 atm rich propane-air and lean hydrogen-air flames are
diffusively unstable and take on a cellular appearance during the early stages of propagation; in
contrast, lean propane-air and rich hydrogen-air flames are diffusively stable and their surface
remains smooth for a sufficiently long time. The early wrinkling of lean propane-air and rich
hydrogen-air flames at 20 atm is a consequence of the hydrodynamic instability. Courtesy of
C.K. Law.

the effective Lewis number for such mixtures is sufficiently large, the flames are dif-
fusively stable. However, at 20 atmospheres the lean propane-air (φ = 0.95) and rich
hydrogen-air (φ = 2.5) flames become wrinkled early on during the propagation. At
high pressure, the flame thickness lf is significantly reduced and the stabilizing influ-
ences of diffusion are minimized. The wrinkling is therefore a direct consequence of
the hydrodynamic instability.

Information about the range of cell size observed during the self-wrinkling phe-
nomenon can be deduced from Equation 5 in the form of a marginal stability curve,
as illustrated in Figure 2. The graph shows the range of unstable modes as a func-
tion of the Peclet number Pe = RSL/Dth, or instantaneous flame size. The nose of
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Figure 2
Peninsula of instability for
spherically expanding
flames. The graph shows
the range of unstable modes
for a given Peclet number
Pe, or flame size R.
Calculated for Leeff = 1.23,

Pr = 0.7, σ = 6, and
λ ∼ T1/2.

the peninsular instability determines the critical Peclet number Pec, or critical ra-
dius Rc, when the flame first becomes unstable. At the onset of the instability the
fastest-growing disturbance corresponds to nc ≈ 14, implying that the flame surface
is instantaneously covered with a large number of cells. As the flame continues to
expand, disturbances of spherical harmonics higher than nc grow faster, suggesting
that more and more cells develop on the flame surface. Expected cell sizes fall in
the range λmin < λ < λmax with larger corrugations stabilized by stretch and dis-
turbances with shorter wavelength stabilized by diffusion. The lower branch of the
peninsula very quickly asymptotes to the constant value n∗ and because the stabi-
lizing mechanism here is purely hydrodynamic, n∗ depends only on σ ; for realistic
values of thermal expansion n∗ ≈ 7. This value determines the largest expected cell
size, λmax = 2π R/n∗, which increases with radius linearly: as the flame expands, the
stretch rate decreases and cells of larger and larger size are able to develop on the
flame surface. But large cells are extremely sensitive to external noise, which, when
amplified by the hydrodynamic instability, leads to the spontaneous appearance of
small-scale structures, or smaller-size cells, as discussed below. The upper branch of
the peninsula asymptotes to a line, Pe/n = C , where the constant C depends on the
Lewis number. Hence, the smallest cell size λmin = 2π R/n ∼ 2πC lf scales on the
diffusion length and depends on the mixture composition. Because cells that are too
small cannot survive, it is plausible to expect that λmin is representative of the average
cell size, when the whole flame surface becomes cellular.

Details of the transition from stable to cellular flames were recently studied by
Bradley and coworkers (Bradley et al. 1998, 2000; Bradley & Harper 1994) and Law
and coworkers ( Jomaas et al. 2005, Law et al. 2005). Bradley’s results indicate that the
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theoretical predictions underestimate the critical Peclet number corresponding to the
appearance of cells. Because of the unsteady nature of the problem, the initial growth
of disturbances does not necessarily coincide with the time when the instability is first
observed in an experiment. Disturbances that started growing at the time tc may not be
detected until their amplitude reaches a significantly larger size. Furthermore, when
allowing for the dependence of the transport coefficients on temperature, and/or by
accounting for radiation losses from the pocket of burnt gas, the onset of instability
was delayed to larger values of Pe, yielding results that are more commensurate with
the experimental record (Addabbo et al. 2002, Bechtold et al. 2004). This suggests that
the instability threshold is sensitive to the physical parameters. The results of Law
and coworkers show that a quantitative agreement between theory and experiment
requires a sensible choice of flame properties that depend on the local experimental
conditions. The evaluation of the thermal diffusivity of the mixture, for example, is
subject to uncertainties in the choice of temperature and concentrations, as is the
global activation energy, which additionally depends on the detailed reaction mecha-
nism. With a judicious choice of the parameters, the predicted critical Peclet number
was found to agree with the experimental conditions under a wide range of condi-
tions ( Jomaas et al. 2005). The experimental wave numbers, determined from cine and
PLIF images of cells, fall within a peninsular of instability similar to that of Figure 2
(Bradley et al. 2000), and the experimentally measured values of cell size, ranging
from 6.5 to 10 mm, are in the same range of the predictions (Addabbo et al. 2002).

The self-wrinkling phenomenon of expanding flames gives rise to flame acceler-
ation, with the flame radius increasing in time according to a power law, R ∼ ta ,
whose exponent a remains a subject of current investigations (Bradley et al. 2001,
Gostintsev et al. 1989, Kwon et al. 2002, Sivashinsky 2002).

2.3. Nonlinear Evolution of Hydrodynamically Unstable Flames

Hydrodynamical instability leads to corrugated structures with transverse dimensions
that are much larger than the typical wavelength of ordinary cellular flames and, unlike
the latter, the effect does not depend on the mixture composition. Lind & Whitson
(1977) performed experiments of large expanding flames using lean hydrocarbon-air
mixtures in 5–10 m thin plastic hemispherical bags. The bag tore loose at the early
stage of propagation leaving the flame to expand freely at a nearly constant pressure.
The expanding flame first appeared as a blue hemisphere, but as its size increased the
surface became rough with a “pebbled” appearance. The corrugations increased in size
to about 0.4 –1.0 m with a finer structure superimposed. The measured propagation
velocities were 1.6–1.8 times the laminar flame speed. The results were nearly the
same for all five fuels studied even though their normal burning velocities vary by a
factor of four.

Theoretical progress on the nonlinear development of hydrodynamically unstable
flames has relied primarily on simplified models of a nominally planar front. One such
model is the Michelson-Sivashinsky (MS) equation, named after the authors who de-
rived it and provided the first numerical integration (Michelson & Sivashinsky 1977,
Sivashinsky 1977). The MS equation is obtained in a weakly nonlinear long-wave
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asymptotic limit, valid when the density contrast across the flame is small, or σ ∼ 1.
There have been attempts to extend the MS model by including higher-order terms
(see, for example, Bychkov 1998 and Kazakov & Liberman 2002), but these studies
produced results that are practically similar to those predicted by the MS equation.
Because in the weak thermal expansion limit the DL growth rate ωDL ∼ 1

2 (σ − 1) is
relatively small, the evolution is described on the slow timescale τ = (σ − 1)t. For an
unperturbed planar flame propagating in the negative y-direction, the perturbed front
is expressed in the form y = −SLt + (σ − 1)ϕ, where ϕ = ϕ(x, τ ), and the problem
reduces to a single integro-differential equation for the flame displacement ϕ. Let the
transverse domain of integration L be used as a unit of length, SL as a unit of speed,
and L/SL as a unit of time, the evolution equation (in dimensionless form) becomes

∂ϕ

∂τ
+ 1

2
(∇ϕ)2 − α ∇2ϕ − 1

8π2

∫
|k| eik·(x−x̃) ϕ(x̃ , τ ) dk dx̃ = 0.

When linearized, this equation yields the dispersion relation (Equation 3) expanded
to O(σ −1), where α, which is proportional to Leeff − Le∗

eff and inversely proportional
to L, is the reduced Markstein number.

The MS equation admits exact solutions that correspond to cusp-like structures
(or cells) extended periodically in transverse directions that propagate at a constant
speed along the y-axis without changing shape. On a finite domain 0 ≤ x ≤ 1 with
periodic boundary conditions the cusp-like solution takes the form ϕ = −Uτ + �(x)
with U = 1

2

∫ 1
0 �2

x dx. Hence, the fractional increase in propagation speed U is equal
to the fractional increase in surface area of the flame front. Of particular interest is
the set of so-called coalescent pole solutions, �N (x), obtained as a finite sum from
contribution of N-poles whose (common) real parts represent the location of the
“cusp” and imaginary parts their heights (Thual et al. 1985). The propagation speed
of the N-pole solution, UN = 2π Nα(1 − 4π Nα), increases when reducing α and
asymptotes to a constant value U∞ = 1/8 as α → 0. The stability results of (Vaynblat
& Matalon 2000a,b) show that for any value of α > 0 there exists, among the family
of coalescent pole solutions, one and only one asymptotically stable solution. This
implies that for any value of α > 0, the long-time behavior of the solution of the MS
equation, starting with arbitrary initial data, would converge to a steady propagating
pole solution.

Numerical experiments show that when α is not too small the short wavelength
corrugations introduced through initial disturbances merge, forming bigger cells as
time progresses. These eventually coalesce into a single-peak structure filling up the
entire interval that propagates at a constant speed (see Figure 3). The solution appears
to converge exactly to the corresponding pole solution (shown as the dotted red curve
in the figure). No change in shape is detected when continuing the integration over
a longer time interval. Thus, when the transverse cell dimension L is not too large,
the cusp-like structure is stable and propagates as a whole at a constant speed that is
larger than the speed of a planar flame.

The general structure of the solution is retained in computations carried out for
small α, but the solution does not settle to a steadily propagating state. Rather, small
random-like subwrinkles appear sporadically on the flame front and the speed of
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Figure 3
The development of the
flame-front profile ϕ(x, τ ),
based on the MS equation
for α = 0.005, starting
with arbitrary initial data.
The flame is propagating
along the negative y-axis.
The small disturbances
introduced through the
initial conditions merge
and form bigger cells that
eventually coalesce into a
single-peak structure. The
long-time behavior of the
numerical solution
coincides with the exact
pole solution shown as the
red dotted curve.

propagation varies continuously in time. The wrinkles appear first on the troughs,
propagate along the flame surface, and disappear at the crests (see Figure 4). In a
series of numerical experiments (Rastigeyev & Matalon 2006a), it was verified that the
appearance of wrinkles is highly sensitive to the level of numerical noise and to the so-
called aliasing effect, where the solution gets contaminated by high-frequency modes,
which appear on the discrete grid and cannot be properly distinguished from the
correct lower modes. The number of wrinkles appearing on the solution was reduced
significantly by increasing the numerical accuracy and/or suppressing the aliasing
effect. Furthermore, small-scale wrinkles that closely resemble those emerging from
the numerical noise were artificially created by introducing a low-amplitude external
forcing, representing random noise on an otherwise smooth steadily propagating
profile. Hence, when the transverse cell dimension L is sufficiently large, a low level
of background noise provides small disturbances that are rapidly magnified by the
hydrodynamic instability, resulting in small-scale wrinkles formed sporadically on the
flame front. External noise may result, for example, from a weakly turbulent flow in
the incoming stream. The turbulence then provides a permanent level of noise that
enables the multiscale nature of the flame surface to be sustained. The appearance
of wrinkles causes the flame to accelerate with the propagation speed increasing
further until the wrinkles merge at the crest. The disappearance of the wrinkles is
associated with a drop in propagation speed. The decrease in speed continues either
until the flame stabilizes to the appropriate pole solution, or until new wrinkles
reappear on the flame front (see Figure 5). On average, the propagation speed is
significantly increased (nearly doubled) in the presence of noise. This provides a
possible explanation of the unsteady pebbly-like structures observed on the front of
sufficiently large flames and the associated large increase in propagation speed.

Numerical simulations of the Navier-Stokes equations, without restriction on the
thermal expansion parameter, were carried out recently by Rastigeyev & Matalon
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-20.5

-20
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Figure 4
The development of the flame-front profile ϕ(x, τ ), based on the MS equation for α = 0.004,
starting with arbitrary initial data. The flame is propagating along the negative y-axis and does
not settle to a steadily propagating state. The solution is continuously contaminated by small
wrinkles that appear sporadically near x = 0, propagate along the surface, and disappear at the
crest. Although the solution seems to have reached a steady state, new wrinkles appear on the
front if the integration is carried out for a longer time interval.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

U 

τ

Figure 5
The increment in
propagation speed (scaled
appropriately) of a
corrugated flame with
α = 0.005 subjected to
noise as a function of time.
In the absence of noise, the
cusp-like structure that
develops coincides with the
8-pole solution, which
propagates at a constant
speed U ≈ 0.124 (dashed
blue line). Note that the
average speed is
significantly increased as a
result of noise.
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Figure 6
The development of a flame front for (a) α = 0.005 and (b) α = 0.0005 with a realistic σ = 6.
The profiles shown in the figure correspond to the long-time behavior of the solution, after
the initial transient has faded out. The flame shape shown in the figure has been scaled; for the
physically correct amplitudes the graph must be amplified by a factor σ −1 = 5.

(2006a,b) within the framework of a hydrodynamic theory. The results indicate that
the predictions of the MS equation remain qualitatively correct for realistic σ . If
the transverse size L is not too large, a steadily propagating single-peak structure
emerges but with a significantly larger amplitude. The small-scale unsteady behavior
uncovered when L is large is also similar to the MS prediction, except that for σ ≈ 6
the first appearance of the small-scale wrinkles on the surface of the flame front (for
a given grid resolution) occurs at a much larger value of L. Figure 6 illustrates these
two cases. The graph shows the development of ϕ as a function of time, after the
initial transient has faded out. A smooth structure that propagates steadily results
when α = 0.005. But for α = 0.0005 the solution never settles to a steady state;
small-scale perturbations are continuously created at the troughs and travel along the
front, disappearing at the crests. One also notes that as α decreases the cusp appears
sharper and sharper and the “parabolic” convex part of the flame front gets flatter.

The propagation speed of the corrugated front increases with decreasing α but
quickly reaches an asymptote, so that the relative increment in speed becomes inde-
pendent of the mixture composition and of the lateral size L. It scales linearly with the
thermal expansion coefficient, and for realistic values of σ it amounts to an increase
in speed of 7–15%. The average incremental speed, however, increases significantly
when noise-generated unsteady structures evolve on the surface, as illustrated in
Figure 5, and can attain values close to twice the laminar flame speed.

The nonlinear development of a spherically expanding flame is far more complex.
Although the MS equation can be extended to account for the expansion rate (Rahibe
et al. 1995), the results are only valid locally and apply to a weakly curved segment of
the front. Computations that apply to the whole spherical flame surface are extremely
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extensive and costly even within the simplification of weak thermal expansion. With
model equations it was possible to reproduce to some extent the observed complex
network of wrinkles (D’Angelo et al. 2000) or the acceleration induced by the wrin-
kling (Karlin & Sivashinsky 2006).

In their seminal papers, Darrieus and Landau both concluded that the instability
of a flame front modeled as a surface of density discontinuity leads to turbulence.
Darrieus has further stated that, although the prediction of turbulence is essential
and confirms the expectation of an ideal fluid, it is paradoxical that the introduction
of viscosity in the calculation does not assure stability. Contrary to this view, the
evidence today supports the idea that hydrodynamic instability leads to corrugated
structures with relatively large transverse dimensions that propagate steadily at a
speed much larger than the laminar flame speed. The larger cells are sensitive to
background noise, resulting in small-scale wrinkles that appear sporadically on the
flame surface, travel along the flame surface, and cause a significant increase in its
average speed. The self-wrinkling phenomenon may eventually lead to turbulence.

3. NONPREMIXED COMBUSTION

Intrinsic instabilities in nonpremixed combustion have not been studied as exten-
sively as in premixed flames. The reason may lie in the difficulties of observing such
instabilities in a simple configuration that enables analytical treatment and provides
means for direct comparison with experiments. Flat premixed flames can be observed
in the laboratory in a carefully controlled uniform flow kept equal to the laminar
flame speed. The formation of cellular structures, the onset of oscillations, and the
occurrence of other complex patterns are then easily established by changing the flow
conditions and/or mixture composition. In contrast, a steady planar diffusion flame
in a truly one-dimensional setting is not possible. For a one-dimensional net flow
rate the flux of the reactant originating at infinity and diffusing against the flow is
necessarily fixed all the way down to the flame. This implies that the concentration
of this reactant must remain constant so that the reactant cannot be depleted at the
flame as required.

The first known instability in diffusion flames is due to Gardside & Jackson (1951),
who observed that when diluted with N2 or CO2 the surface of a hydrogen-air jet flame
often comprises triangular cells in the shape of a polyhedron. Later, Dongworth &
Melvin (1976) observed that the base of a hydrogen-oxygen diffusion flame on top of
a splitter-plate burner, which is normally straight, takes on a cellular appearance when
the flow rate is sufficiently high and the reactants are diluted in N2 or Ar but not in He.
Chen et al. (1992) also reported the occurrence of cellular structures on slot-burner
hydrocarbon-air diffusion flames diluted with SF6 but not with N2, CO2, or He.
Similarly, Ishizuka & Tsuji (1981) observed the formation of stripes, or elongated cells,
on the surface of N2-diluted hydrogen-oxygen counterflow diffusion flames in the
unstrained cross-flow direction. The experimental record of flame oscillations, which
is another form of instability, includes condensed-phase fuels (Chan & Tien 1979),
candle and large suspended fuel droplets in a microgravity environment (Nayagam
& Williams 1998, Ross et al. 1991), jet and spray diffusion flames (Füri et al. 2000,
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Golovanevsky et al. 1999), and flame spreading over liquid beds (Ross 1994). The
nature of the oscillation in each of these experiments is quite different. The droplet
flame exhibits radial oscillations. The jet flame expands and contracts as a whole
during a cycle. For the microgravity candle flame, the edge moves back and forth along
its hemispherical surface. Similarly, in flame spreading the oscillations are primarily
seen near the edge, decaying along the trailing diffusion flame.

3.1. Diffusion Flames

It is evident that the observed cellular and oscillating flames result from a diffusive-
thermal instability and are not hydrodynamically driven.3 Most theoretical studies
have therefore adopted a constant-density model to filter out the hydrodynamic dis-
turbances. The problem then reduces to a reaction-diffusion system with a prescribed
flow. Although thermal expansion has a marked influence on flame instability, as dis-
cussed below, it does not play a crucial role as it does with premixed flames, which
provides a posteriori justification for the constant-density assumption. Even within
this framework, the problem is rather complicated because of the large number of pa-
rameters involved. These include the two Lewis numbers LeF and LeO associated with
the fuel and oxidizer, respectively, the initial mixture strength φ defined as the fuel-to-
oxidizer mass supplied in the respective streams normalized by their stoichiometric
proportions, the difference between temperatures at the opposing boundaries, and
the flow conditions characterized by a Damköhler number D defined as the ratio of
the residence time in the flame zone to the chemical reaction time Uc . The Damköhler
number is inversely proportional to the square of the characteristic speed Uc .

The underlying hydrodynamics in the reported experiments is generally non-
trivial, involving multidimensional shear and strained flows that produce nonuni-
form conditions over the flame surface and complicate theoretical investigations even
within the context of constant density. To retain one-dimensional simplicity, inves-
tigators adopted an idealized construct—the one-dimensional chambered diffusion
flame—for theoretical modeling (Kirkby & Schmitz 1966, Matalon et al. 1979). The
idealized burner in these studies is supplied from the bottom with fuel through a
semipermeable plate, which maintains a uniform flow throughout the cross section
and prevents backward diffusion of products. The other reactant, the oxidizer, dif-
fuses uniformly from the top of the chamber assumed to be at a finite distance away,
to the flame against the upward flow of products. Conditions across the top exit of
the combustion chamber, where the oxidizer originates, are maintained constant by a
fast-flowing stream. Lo Jacono et al. (2005) recently introduced a novel design where
the difficulty of creating uniform conditions in the horizontal cross section at the
top is overcome by introducing the oxidizer through an array of hundreds of closely

3Combustion studies that favor an unstable underlying flow, which promotes mixing, are often of interest.
The influence of heat release on Kelvin-Helmholtz instability in a mixing layer, for example, was studied
by Jackson & Grosch (1990) in the context of an inviscid flow with a flame-sheet approximation. Coupled
hydrodynamic and combustion modes at near-extinction conditions were studied by Papas et al. (2003) using
the boundary-layer equations and a parallel flow approximation. However, these studies fall outside the scope
of this review.
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Figure 7
Photograph of a planar
CO2-diluted
hydrogen-oxygen diffusion
flame (side view) in a porous
plug counter-diffusion
(PPCD) burner. The
needles supplying the
oxidizer are seen at the top
of the figure. Courtesy of
P.A. Monkewitz.

spaced hypodermic needles and allowing the combustion products to escape verti-
cally through the space between the needles. Figure 7 shows a side-view photograph
of a planar unstrained flame in what will be referred to as the porous plug counter-
diffusion (PPCD) burner. Measured strain rates along the flame front were less than
1 s−1 and are associated with flow nonuniformities resulting from heat loss to the
chamber walls, which can be minimized by appropriate heat-loss management. The
realization of a planar unstrained diffusion flame will likely increase the experimental
data on diffusion flame instability and facilitate direct comparison with theory.

Stability analysis of diffusion flames has predominantly used a planar flame as
the basic state (Cheatham & Matalon 2000, Kim 1997, Kim et al. 1996, Kukuck &
Matalon 2001, Miklavcic et al. 2005, Vance et al. 2001). Although the various models
differ slightly by the boundary conditions imposed, these minor differences do not
affect the results in any significant way. However, because the configuration is not
symmetric, interchanging the roles of fuel and oxidizer has important consequences.
In general, an observer located at the flame sees a net mass flux directed either from
the fuel or from the oxidizer side. Therefore, one of the reactants diffuses against the
stream and has a special role in determining the location and stability of the flame.
In the discussion presented below it is assumed, as in the description of the PPCD
burner, that fuel is supplied in the upcoming stream and the oxidizer diffuses against
the stream. For the reverse configuration—the inverse diffusion flame—the role of
fuel and oxidizer must be interchanged when interpreting the results. Both setups
can be tested experimentally.

The most comprehensive stability results are based on the asymptotic model pro-
posed by Cheatham & Matalon (2000), which exploits the limit of a large activation
energy, or large Zel’dovich number β 
 1, for a one-step irreversible global chemical
reaction. The chemical activity is then confined to a sheet and the formulation reduces
to a nonlinear free-boundary problem for determining the temperature and reactant
mass fractions as well as the instantaneous shape of the sheet itself. By resolving the
reaction zone on the O(β−1) scale, appropriate conditions that describe the influences
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of the reaction and diffusion processes are obtained as matching conditions. Unlike
the fast chemistry limit, D → ∞, where the fuel and oxidizer are completely con-
sumed along the stoichiometric surface as envisaged by Burke & Shumann (1928),
the present theory permits incomplete combustion with different degrees of reac-
tant consumption. It is therefore applicable to conditions that extend from complete
combustion down to extinction, namely for Dext ≤ D < ∞, where Dext denotes the
conditions where steady burning can no longer be sustained and the flame is extin-
guished because of a low enough temperature and excessive reactant leakage.

The stability analysis of a planar flame yields an explicit dispersion relation, but due
to its transcendental nature, finding roots for the growth rate in the complex plane
requires substantial numerical computations (Cheatham & Matalon 2000, Kukuck
& Matalon 2001). Therefore, results have also relied on numerically solving the
free-boundary problem directly (Metzener & Matalon 2006), an approach useful in
extending the analysis to account for density variations. The Burke-Schumann so-
lution of complete combustion is unconditionally stable. Similarly, the flame for the
equidiffusion case, LeF = LeO = 1, is stable for all D. In both cases the available
enthalpy at the reaction sheet h f = 0, so when instabilities exist they are necessar-
ily associated with excess or deficiency in the available enthalpy. This occurs as a
result of differential—nonunity Lewis numbers—and preferential—unequal Lewis
numbers—diffusion, and at high flow rates, namely when the Damköhler number is
sufficiently low or Dext ≤ D < D

∗. The marginally stable state D
∗ depends on the

mixture composition.
The various patterns that are likely to be observed at the onset of instability are

summarized in the Lewis numbers parameter plane of Figure 8. The plane is divided
into several regions by two curves. The solid red curve h f = 0 separates regions

Figure 8
Diagram illustrating the
various possible modes of
instability in the
fuel-oxidizer Lewis numbers
parameter plane. The solid
red curve h f = 0 separates
regions where there is
excess (below) and deficiency
(above) in available enthalpy
at the reaction sheet; the
dashed blue vertical line
separates regions of
relatively lean (left) and rich
(right) mixtures.
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of excess (below the curve) and deficiency (above the curve) in available enthalpy at
the reaction sheet; it always includes the point LeF = LeO = 1 and stretches out as
φ decreases to include a wider range of LeO. The dashed blue vertical line γ = 0
separates regions of relatively lean (to the left) and rich (to the right) mixtures, and
shifts to the right as the initial strength φ decreases.

Stationary cells are formed and sustained when the available enthalpy is in excess.
This occurs primarily when the two Lewis numbers are less than one, but could also
result when one of the Lewis numbers is near, or even slightly above, one, provided the
other is less than one. The characteristic cell size is given by λ = 2π/k∗, where k∗ is the
wave number of the most amplified disturbance. Typical cells evolve on the diffusion
time tD = Dth/ l2

D and scale on the diffusion length lD ∼ Dth/Uc . For fuel-lean systems
k∗ ≈ 0.5 − 4 l−1

D , which, depending on the characteristic speed, yield cells 0.3–2 cm
wide. But for near stoichiometric conditions and in slightly rich mixtures the cells are
much smaller, and scale on the reaction zone thickness lR = β−1lD. Disturbances now
intrude in the reaction zone and a separate analysis that incorporates small wavelength
perturbations evolving on the fast time tR = β−2tD is required (Buckmaster et al. 1983,
Kim 1997, Kim & Lee 1999). These high-frequency modes, also referred to as fast-
time instabilities, are limited to conditions that are very near the extinction limit, or
D

∗ ≈ Dext. In contrast, ordinary cells are predicted to occur over a wider range of
flow rates, with D

∗ − Dext = O(1), and are more likely to be observed in practice.
The transition from a planar to a cellular structure was observed experimentally in

a CO2-diluted hydrogen oxygen flame in a PPCD burner (Lo Jacono et al. 2005). The
oxygen concentration injected from the hypodermic needle supply varied in the range
10.6–100% by mass. For each oxidizer mixture, the hydrogen mass fraction in the fuel
stream was gradually decreased by increasing the CO2 concentration. For an oxidizer
mixture with 62.9% O2, the flame was planar when the fuel stream contained 1.5% H2

by mass, as shown in Figure 7. The spontaneous formation of cells was first observed
when the H2 concentration was reduced to approximately 1.25%. A typical cellular
pattern is shown in Figure 9. The cellular structure was retained when reducing
the hydrogen concentration down to 0.7%, but reducing it further resulted in flame

Figure 9
Photographs of a cellular
CO2-diluted
hydrogen-oxygen diffusion
flame, taken at an oblique
angle, in a porous plug
counter-diffusion (PPCD)
burner. Courtesy of
P.A. Monkewitz.
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extinction. The observed cells during the transition were ∼0.4–1 cm, with the smaller
size seen near extinction. Cellular flames were observed over a significant range of
H2 concentration, corresponding to an initial mixture strength φ < 1, namely in lean
systems, and for conditions corresponding to LeO ∼ 0.97–1.33 and LeF ∼ 0.22–0.29.
In richer systems, or φ > 1, they were either observed just prior to extinction or were
never observed. The conditions for the onset of the cellular instability as well as the
typical dimension of the observed cells are in complete agreement with the theoretical
predictions.

Cells at the base of jet flames and flames on top of slot and splitter-plate burners
were observed in H2–O2 systems diluted in N2 or Ar, in which case LeF ∼ 0.33–
0.35, but not when the dilutent was He because in this case LeF ∼ 1.02 is too large.
They were also observed in hydrocarbon-air flames when diluted in SF6, which tends
to lower the Lewis numbers significantly, but not when diluted in N2 or CO2. The
reported cell sizes in these studies were approximately 0.7–1.5 cm. The conditions for
the onset of the cellular instability appear in general agreement with the theoretical
predictions even though the underlying hydrodynamics in the reported experiments
is far more complex. Evidence that the typical cell size in these circumstances also
depends on the transverse velocity gradient, or shear-layer thickness, was recently
proposed by D. Lo Jacono & P.A. Monkewitz (unpublished manuscript).

Deficiency in enthalpy in the reaction zone leads to oscillations. When both Lewis
numbers are larger than one, the fastest-growing mode is one of zero wave number so
that the preferred mode of instability is planar pulsations with the flame moving back
and forth in a direction perpendicular to its surface. In rich systems the frequency
of oscillations scales on the inverse of the diffusion time and is estimated at 1–6 Hz
(Kukuck & Matalon 2001); for lean mixtures the onset occurs near the extinction limit
as a high-frequency mode that scales on the inverse of the reaction time. The onset
of planar pulsations in the PPCD burner has not yet been observed, but comparison
with jet diffusion flames, which contract and expand vertically during a cycle, shows
that the predicted conditions are indeed commensurate with the observations (Füri
et al. 2000). For example, oscillations were observed for propane-air flames diluted
in nitrogen when φ ≥ 1.32, in which case LeF varied from 1.1 to 1.8 with LeO ≈ 1,
but were not observed for φ ≤ 0.76 despite the large-fuel Lewis number LeF = 1.86,
which resulted from the N2-dilution.

While the linear theory is able to predict the onset of oscillations, the subsequent
flame behavior must be determined by a nonlinear analysis. A standard bifurcation
analysis carried out by Cheatham (1997, pp. 135–38) yields amplitude equations that,
depending on the parameters, lead to either unbounded or time-periodic solutions.
Therefore, sustained oscillations (limit cycle) can only occur in a restricted range of
the parameters; otherwise the oscillations lead to premature extinction or blow off.
Wang et al. (2006) recently provided a careful mapping of the parameters appearing
in the amplitude equations.

Although cellular structures and flame oscillation are the predominant forms of
instability, other possible patterns may exist in the transition regions between various
domains or for extreme values of the parameters. Oscillating cells, for example, result
when LeF < 1 and LeO is sufficiently large from competing modes of comparable
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and/or disparate scales. Mixed modes of instability were noted in jet diffusion flames
in the form of traveling, or rotating, cells (Lo Jacono et al. 2003), and more recently in
the flat flame of the PPCD burner in the form of transverse oscillations, or traveling
waves of long wavelength (P. Papas & P.A. Monkewitz, private communication).

The main consequence of nonunity Lewis numbers on the combustion field is
that it yields temperature and concentration profiles that are nonsimilar. A volumet-
ric heat-loss term that affects the temperature but not the concentration fields also
generates nonsimilar profiles and thus promotes diffusive-thermal instabilities. In
the presence of gas-phase radiation, for example, Cheatham & Matalon (1996) found
that flame oscillation can be triggered by appreciable heat losses even for unity Lewis
numbers, and the instability is enhanced by heat losses when the conditions already
favor oscillations (Kukuck & Matalon 2001). Oscillations in a bandwidth of 1–3.5 Hz
were observed when a fraction of the fuel supplied in a jet flame was introduced in
the liquid phase in the form of droplets (Golovanevsky et al. 1999). Under similar
conditions, but with the droplet’s content replaced by fuel vapor, a stable flame was
established. In this case, the instability is attributed to heat loss from the gas phase
extracted for droplet vaporization. A complementary analysis containing the essen-
tial features of the experimental conditions confirmed the importance of heat loss in
triggering flame oscillations. Further compelling evidence of the role of heat loss was
provided when water droplets, instead of fuel droplets, were injected, which led to
oscillations of similar frequencies.

Because thermal expansion is not the driving mechanism for instability, the gen-
eral characterization described above remains qualitatively correct even when real-
istically accounting for density variations (P. Metzener & M. Matalon, forthcoming
manuscript). Thermal expansion was found to have a different influence on the various
modes of instability, and its overall effect depends on the ratio of the stoichiometric
and supply temperatures r = Ta/Tu , as well as on the temperature differential across
the entire combustion layer. For example, the degree of instability for the onset of
cells increases with increasing r and the marginal stability Damköhler number D

∗

is significantly larger than the value predicted by the constant-density model. On
the other hand, the degree of instability for the onset of planar pulsations decreases
with increasing r, and the marginal stability Damköhler number D

∗ is smaller than
the value predicted by the constant-density model. The range of conditions leading
to cellular flames is therefore wider as a result of thermal expansion, whereas those
leading to oscillations are more restricted.

3.2. Edge-flames

A simple configuration of an edge-flame stabilized near the trailing edge of a splitter
plate separating coflowing streams of fuel and oxidizer is shown in Figure 10. De-
pending on the velocities of the fuel and oxidizer streams, the flame may be either
attached to or lifted off away from the plate. The attached flame is a diffusion flame
that separates a region of primarily fuel from a region where there is mainly oxidizer.
But when the flame is lifted it assumes the tribrachial structure shown in the figure,
which consists of lean and rich premixed segments with a diffusion flame trailing
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Figure 10
Edge-flame stabilized at
the trailing edge of a
splitter plate separating
coflowing streams of
nitrogen-diluted methane
and air. The flame is
stabilized by a negative
velocity gradient in the
streamwise direction.
Photograph taken by
Kioni et al. (1993).

behind. The standoff distance of the edge determined by the propagation speed rel-
ative to the incoming gas depends on several parameters: the mean flow rate and the
thickness of the boundary layer leaving the splitter plate, which characterize the flow
conditions; the diffusivities of the reactants LeF and LeO and the mixture strength
φ that characterize the mixture composition; and the ratio of the stoichiometric and
supply temperatures r that characterizes the effects of the exothermicity of the reac-
tion or thermal expansion. In the absence of preferential diffusion (LeF = LeO) and
when the fuel and oxidizer are supplied in stoichiometric proportions, the edge-flame
is symmetric with respect to the axis and the trailing diffusion flame remains parallel
to the plate; otherwise it leans toward one of the two sides approximately along the
stoichiometric surface.

Thermal expansion introduces displacement velocities proportional to SL by the
premixed flames and therefore has a significant effect on the flow field and conse-
quently on the flame standoff distance. Nevertheless, most edge-flame calculations,
and in particular stability considerations, are based on the constant-density approxi-
mation (r = 1), which appears to qualitatively provide the appropriate conditions for
the onset of instability.

Studies of edge-flame oscillations were carried out numerically by Buckmaster
and coworkers (Buckmaster 2002), who used a model problem of a flat flame along an
axis, with fuel and oxidizer supplied at two opposing ends in the transverse direction.
The edge results when cutting off the fuel supply at a finite position. The calculations
reveal that the edge-flame oscillates back and forth along the axis when the Damköhler
number is sufficiently low and the fuel Lewis number is sufficiently larger than one;
the oxidizer Lewis number was assumed equal to one.

The edge-flame in a mixing layer was studied by Kurdyumov & Matalon (2002,
2004) assuming that the streams were of equal and constant velocities, and more re-
cently (2006) using a realistically computed flow near the trailing edge of the plate.
Although the boundary-layer approximation can be used to describe the mixing pro-
cess between the two streams, there is a small region near the tip of the plate where
the flow field must satisfy the full Navier-Stokes equations. This region is embedded
in the lower of the much larger triple-deck region that describes the flow near the
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Figure 11
Edge-flame near the trailing edge of a splitter plate separating coflowing streams of fuel and
oxidizer; computed for the symmetric case, LeF = LeO with the reactants supplied in
stoichiometric proportion, no heat loss, a scaled Damköhler number D = 5, and β = 10. The
white curves correspond to streamlines and the different color shades to (a) reaction rate
contours and (b) isotherms, with low/high values as indicated in the legend.

plate’s trailing edge, and scales as Re−1/2
BL

, where ReBL is the Reynolds number based
on the thickness of the boundary layers along the plate. Results of computations for
the symmetric case in the absence of heat loss are shown in Figure 11. The flow
pattern illustrated by selected streamlines shows the entrainment of fuel and oxidizer
into the mixing layer. The change in the streamlines slope at the downstream edge
of the boundary layer corresponds to an acceleration experienced by the fluid ele-
ments while crossing the section x = 0. The lifted flame and its tribrachial nature
are clearly seen in the two graphs, where appropriately scaled reaction-rate contours
and isotherms are drawn. The standoff distance depends primarily on the Damköhler
number D, which is inversely proportional to the characteristic flow rate, and to a
lesser extent on the mixture composition and the mobility of the reactants. When
radiative losses are accounted for, the trailing diffusion flame is of finite extent and
the standoff distance also depends on the heat-loss parameter b—the ratio of the
radiative heat loss to the chemical energy release.

The dependence of the flame standoff distance on the parameters D and b is shown
in Figure 12 for a wide range of Lewis numbers. The standoff distance xw is defined as
the location where the reaction rate reaches its maximum value. Figure 12a shows the
dependence on D for the adiabatic case (b = 0). For large D the flame is attached to the
plate; it lifts off when increasing the flow rate, or decreasing D, and moves away from
the plate. For sufficiently small values of Le (below approximately 1.2) the solution is
multivalued. In this case, marginal stability coincides with the turning point D = Dext,
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Figure 12
Response curves showing the dependence of the flame standoff distance xw on (a) the
Damköhler number D for the adiabatic case b = 0, and (b) the heat-loss parameter b for a fixed
value of D. The various curves correspond to distinct values of equal Lewis numbers,
Le ≡ Le F = Le O , with the reactants supplied in stoichiometric proportions.

with the solution corresponding to the larger value of xw unstable. An edge-flame can
be stabilized near the plate only for flow rates corresponding to Dext <D<∞; for lower
values of D it is blown off by the flow. For larger values of Le (above approximately
1.4), the solution, within the computational domain, is monotonic. The edge-flame,
however, cannot always be stabilized near the plate. There is a range of unstable states
corresponding to D∗ < D <D

∗ (the marginal states are marked in the figure by black-
filled circles •) where the flame undergoes spontaneous oscillations with the edge
moving back and forth along the axis and dragging the trailing diffusion flame behind
it. The oscillations along the sheet are weakened downstream and are completely
damped at sufficiently large distances. When the combustion field is nonsymmetric,
the edge of the flame is characterized by two coordinates xw and yw. In this case,
oscillations are associated with both coordinates varying periodically in time, and the
edge-flame moves back and forth along a surface that coincides approximately with the
stoichiometric surface (Kurdyumov & Matalon 2004). The dependence of xw on the
heat-loss parameter b is shown in Figure 12b for a specified value of D. Although
the standoff distance xw increases with increasing b, the flame can be stabilized near
the tip of the plate only when heat losses are relatively small. When appreciable, or
b > bc, the flame undergoes spontaneous oscillations. The critical value bc increases
with decreasing Le and precedes the turning point (marked by a circle ©) even for
Le below one. Hence, radiative losses could trigger flame oscillations and this would
occur even when the Lewis numbers are equal to, or slightly less than, unity.

This discussion has centered around oscillations resulting from diffusive-thermal
instabilities. Experimentally observed oscillations that occur in complex situations
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may be driven by more than one factor. They have often been associated with buoy-
ancy effects (Won et al. 2002), and for flame spread over liquid beds to the gas-phase
circulation created ahead of the flame (Schiller et al. 1996) or to Marangoni instability
(Higuera & Garcia-Ybarra 1998). Edge-flames may also occur in premixed systems
displaying various forms of instabilities including cellular structures, as discussed by
Buckmaster (2002).
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