

Flame igniton - simple E _{min} formula
 Since α ~ P⁻¹, E_{min} ~ P⁻² if S_L is independent of P E_{min} ≈ 100,000 times larger in a He-diluted than SF₆-diluted mixture with same S_L, same P (due to α and k [thermal conductivity] differences) Stoichiometric CH₄-air @ 1 atm: predicted E_{min} ≈ 0.010 mJ ≈ 30x times lower than experiment (due to chemical kinetics, heat losses, shock losses) but need something more (Lewis number effects): > 10% H₂-air (S_L ≈ 10 cm/sec): predicted E_{min} ≈ 0.3 mJ = 2.5 times higher than experiments > Lean CH₄-air (S_L ≈ 5 cm/sec): E_{min} ≈ 5 mJ compared to ≈ 5000mJ for lean C₃H₈-air with same S_L - but prediction is same for both
AME 513b - Spring 2020 - Lecture 5 - Ignition and flammability 4

Flame igniton - dynamic analysisUse Viterbi
School of Engineering> Rz is related (but not equal) to an ignition requirement> Joulin (1985) analyzed unsteady equations for Le < 1</td> $\chi(\sigma)ln(\chi(\sigma)) + \frac{q(\sigma)}{2} = \chi(\sigma) \int_{0}^{\sigma} \frac{d\chi(s)}{d\sigma} \frac{ds}{\sqrt{\sigma-s}}$ $\chi = \frac{R(\sigma)}{R_z}; \sigma = 4\pi \left(\frac{(\theta^*)^2}{1-\varepsilon} \frac{Le}{1-\sqrt{Le}}\right)^2 \frac{\alpha t}{R_z^2}; q = \frac{\Theta}{4\pi\lambda R_z T_{ad}(\theta^*)^2}$ (χ, σ and q are the dimensionless radius, time and heat input)and found at the optimal ignition duration $E_{min} \approx 14\beta \left(\frac{1-\varepsilon}{\varepsilon}\right) \left(\frac{1-\sqrt{Le}}{\theta^*Le}\right)^2 \rho_{ad} C_p (T_{ad} - T_{\infty}) R_z^3$ which has the expected form $E_{min} \sim \{\text{energy per unit volume}\} x \{\text{volume of minimal flame kernel}\} \sim \{\rho_{ad}C_p(T_{ad} - T_{\infty})\} x \{R_z^3\}$

		тт		
Time scales (hydrocarbon-air, 1 atm)				
Time scale	Stoich. flame	Limit flame		
Chemistry (t_{chem}) or diffusion (t_{diff})	0.00094 sec	0.25 sec		
Buoyant, inviscid (t _{inv})	0.071 sec	0.071 sec		
Buoyant, viscous (t _{vis})	0.012 sec	0.010 sec		
Conduction (t_{cond}) , d = 5 cm	0.95 sec	1.4 sec		
Radiation (t _{rad})	0.13 sec	0.41 sec		
 > Conclusions > Buoyancy unimportant for near-stoichiometric flames (t_{inv} & t_{vis} >> t_{chem}) > Buoyancy strongly influences near-limit flames at 1g (t_{inv} & t_{vis} < t_{chem}) > Radiation effects unimportant at 1g (t_{vis} << t_{rad}; t_{inv} << t_{rad}) + Radiation effects dominate flames with low S_L (t_{rad} ≈ t_{chem}), but only observable at µg > Small t_{rad} (a few seconds) - drop towers useful > Radiation > conduction only for d > 3 cm > Re ~ Vd/v ~ (gd³/v²)^{1/2} ⇒ turbulent flow at 1g for d > 10 cm 				
AME 513b - Spring 2020 - Lecture 5 - Ignition and flammability 22				

Flammability lii	mits du	e to heat	losses			Viterbi chool of Engineering
Doesn't radiative loss decrease for weaker mixtures, since temperature is lower? NO!						
Impact of heat	loss ~ - I	Heat los: Heat relea	s rate se rate	$\sim \frac{T^2}{e^{-E/\Re T}}$	as T ↓	
Predicted S _{L,lim} (typically 2 cm/s) consistent with µg experiments (Ronney, 1988 [below]; Abbud-Madrid & Ronney, 1990)						nents
	D	0iti	Estimated	S _{u.lim} ,	S _{u,lim} ,	
Fuel	Torr	(see legend)	E _a kcal/mole	calculated, cm/sec	cm/sec	
CH	1500	0.532	47.4	1.30	1.04	
-	760	0.513	43.6	1.73	1.47	
	250	0.474	31.6	2.46	2.02	
	100	0.441	27.8	3.48	2.80	
	50	0.418	26.2	4.68	3.67	
CH	760	0.25,54,7%	43.6	1.71	1.44	
	760	0.75,81.5%	43.6	1.73	1.61	
	760	0.88.83.2%	43.6	1.75	1.47	
	760	1.00.83.6%	43.6	1.82	1.94	
	760	1.20.79.6%	55.7	2.33	2.61	
	760	1.50.73.4%	55.7	2.48	2.15	
	760	2.00,62.5%	55.7	2.72	2.70	
AME 513b - Spring 2020 - Lecture 5 - Ignition and flammability 31					, 31	

Results - laminar flames USC Viterbi	İ cering
Results - laminar flames Subject of Engine> Upward limit> Low Ra> Pelim $\approx 40 \pm 10$ at low Ra> Highest T near centerline of tube> High Ra> Pelim $\approx 0.3 \text{ Ra}^{1/2}$ at high Ra> Highest T near centerline (low Le)> Highest T near wall (high Le)> Indicates strain effects at limit> Downward> Pelim $\approx 40 \pm 10$ at low Ra> Pelim $\approx 1.5 \text{ Ra}^{1/3}$ at high Ra> Upward limits narrower than downward limits at high Le &	i wring
moderate Ra, e.g. lean C_3H_8 - O_2 -Ne, P = 1 atm, D = 2.5 cm, Le \approx 2.6, Ra \approx 19,000: fuel up / fuel down \approx 0.83	
AME 513b - Spring 2020 - Lecture 5 - Ignition and flammability 4	8

References	USC Viterbi School of Engineering
 Abbud-Madrid, A., Ronney, P. D., "Effects of Radiative and Diffusive T Processes on Premixed Flames Near Flammability Limits," <i>Twenty T</i> (<i>International</i>) on Combustion, Combustion Institute, 1990, pp. 423- Abbud-Madrid, A., Ronney, P. D., "Premixed Flame Propagation in an Gas," <i>AIAA Journal</i>, Vol. 31, pp. 2179-2181 (1993). Ballal, D. R., Lefebvre, A. H., "The influence of flow parameters on energy and quenching distance," <i>15th Symposium (International)</i> 	Fransport Third Symposium 431. Optically-Thick minimum ignition) on Combustion,
Combustion Institute, 1975, pp. 1473-1481.	ust Elama 26 151
-162.	usi. Flame 20, 151
Buckmaster, J. D., Mikolaitis, D. (1982a). The premixed flame in a cou Combust. Flame 47, 191-204.	nterflow,
Buckmaster, J. D., Mikolaitis, D. (1982b). A flammability-limit model u	ıpward
propagation through lean methan-air mixtures in a standard flammab	ility tube.
De Soete, G. G., 20th Symposium (International) on Combustion, Comb	oustion Institute,
1984, p. 161.	
Dixon-Lewis, G., Shepard, I. G., 15th Symposium (International) Combustion Institute, 1974, p. 1483.	on Combustion,
Frendi, A., Sibulkin, M., "Dependence of Minimum Ignition En Parameters." Combust Sci. Tech. 73, 395-413, 1990.	ergy on Ignition
Joulin, G., Combust. Sci. Tech. 43, 99 (1985).	
AME 513b - Spring 2020 - Lecture 5 - Ignition and fl	ammability 57

AME 513b - Spring 2020 - Lecture 5 - Ignition and flammability

References	USC Viterbi School of Engineering
Giovangigli, V. and Smooke, M. (1992). Application of Continuation Meth Premixed Laminar Flames, <i>Combust. Sci. Tech.</i> 87, 241-256.	hods to Plane
Jarosinsky I (1983) Flame quenching by a cold wall Combust Flame 50	546 (1997). 1 167
Jarosinsky, J., Strehlow, R. A., Azarbarzin, A. (1982). The mechanisms of	lean limit
extinguishment of an upward and downward propagating flame in a star	ıdard
flammability tube, Proc. Combust. Inst. 19, 1549-1557.	. 1 0
Joulin, G., Clavin, P. (1976). Analyse asymptotique des conditions d'extin laminaries, <i>Acta Astronautica</i> 3, 223.	ction des flammes
Ju, Y., Masuya, G. and Ronney, P. D., "Effects of Radiative Emission and Propagation and Extinction of Premixed Gas Flames" <i>Twenty-Seve</i> Symposium on Combustion Institute 1998, pp. 2619-2626	Absorption on the enth International
Ju, Y., Guo, H., Liu, F., Maruta, K. (1999). Effects of the Lewis number at loss on the bifurcation of extinction of CH ₄ -O ₂ -N ₂ -He flames, <i>J. Fluid</i> 1 190.	nd radiative heat Mech. 379, 165-
Krivulin, V. N., Kudryavtsev, E. A., Baratov, A. N., Badalyan, A. M., Babl	cin, V. S. (1981).
Effect of acceleration on the limits of propagation of homogeneous gas <i>Combust. Expl. Shock Waves (Engl. Transl.)</i> 17, 37-41.	mixtures,
Lakshmisha, K. N., Paul, P. J., Mukunda, H. S. (1990). On the flammabilit loss in flames with detailed chemistry, Proc. Combust. Inst. 23, 433-44	y limit and heat 0.
Levy, A. (1965). An optical study of flammability limits, <i>Proc. Roy. Soc.</i> (134.	London) A283,
AME 513b - Spring 2020 - Lecture 5 - Ignition and flam	mability 58

Viterbi References chool of Engineerin Kingdon, R. G., Weinberg, F. J., 16th Symposium (International) on Combustion, Combustion Institute, 1976, p. 747-756. Kono, M., Kumagai, S., Sakai, T., 16th Symposium (International) on Combustion, Combustion Institute, 1976, p. 757. Kono, M., Hatori, K., Iinuma, K., 20th Symposium (International) on Combustion, Combustion Institute, 1984, p. 133. Lewis, B., von Elbe, G., Combustion, Flames, and Explosions of Gases, 3rd ed., Academic Press, 1987. Lim, E. H., McIlroy, A., Ronney, P. D., Syage, J. A., in: Transport Phenomena in Combustion (S. H. Chan, Ed.), Taylor and Francis, 1996, pp. 176-184. Ronney, P.D., "Effect of Gravity on Laminar Premixed Gas Combustion II: Ignition and Extinction Phenomena," Combustion and Flame, Vol. 62, pp. 120-132 (1985). Ronney, P.D., "On the Mechanisms of Flame Propagation Limits and Extinction Processes at Microgravity," Twenty Second Symposium (International) on Combustion, Combustion Institute, 1988, pp. 1615-1623. Ronney, P. D., "Understanding Combustion Processes Through Microgravity Research," Twenty-Seventh International Symposium on Combustion, Combustion Institute, Pittsburgh, 1998, pp. 2485-2506 Ronney, P.D., Sivashinsky, G.I., "A Theoretical Study of Propagation and Extinction of Nonsteady Spherical Flame Fronts," SIAM Journal on Applied Mathematics, Vol. 49, pp. 1029-1046 (1989). Sloane, T. M., Ronney, P. D., "A Comparison of Ignition Phenomena Modeled with Detailed and Simplified Kinetics," Combustion Science and Technology, Vol. 88, pp. 1-13 (1993). AME 513b - Spring 2020 - Lecture 5 - Ignition and flammability

