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2AME 513b - Spring 2020 - Lecture 4 - Analytical/Numerical Methods I

Turbulent premixed flame 
experiment in a fan-stirred chamber 
(D. Bradley, Leeds Univ.)

Reaction zone

Temperature
Reactant

concentration

Product
concentration

2000K

300K

 δ ≈ α/SL = 0.3 - 6 mm  

Distance from reaction zone

  Convection-diffusion zone  

 Direction of propagation
Speed relative to unburned gas  = SL

  

Reminder: structure of deflagration 

Flame thickness (d) ~ a/SL
(a = thermal diffusivity)

! Temperature increases in convection-diffusion zone or preheat zone 
ahead of reaction zone, even though no heat release occurs there, due 
to balance between convection & diffusion

! Temperature constant downstream (if adiabatic)
! Reactant concentration decreases in convection-diffusion zone, even 

though no chemical reaction occurs there, for the same reason
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Structure of deflagration 
! Recall for infinitely thin reaction zone, the temperature profile is an 

exponential with decay length = flame thickness a/SL; for flow from 
left to right (in +x direction):

! Similarly for fuel mass fraction

! But how to calculate burning velocity?  With reaction term:

Note that Z is not the usual one based on molar concentrations, but 
rather based on fuel mass fraction (units of Z = 1/time)

u
dT
dx

− k
ρCP

d 2T
dx2

=
!q '''
ρCP

; !q ''' = ρQRZYF exp
−E
ℜT

⎛
⎝⎜

⎞
⎠⎟

ρu = ρ∞SL = const.⇒ ρ∞SLCP
dT
dx

− k d
2T
dx2

= ρQRZYF exp
−E
ℜT

⎛
⎝⎜

⎞
⎠⎟

T (x) = T∞ + Tad −T∞( )ex/δ   (x ≤ 0)

T (x) = Tad = constant  (x ≥ 0)

⎫
⎬
⎪

⎭⎪
⇒ dT
dx x=0+

− dT
dx x=0−

= −
(Tad −T∞ )

δ
;δ = k

ρ∞CPSL

Y (x) = Y∞ 1− eLe x/δ( )   (x ≤ 0)

Y (x) = 0 (x ≥ 0)

⎫
⎬
⎪

⎭⎪
⇒ dY
dx x=0+

− dY
dx x=0−

= +
Y∞
δ
Le
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1D laminar premixed flame - formulation

Define !T (x) ≡
T (x)−T∞
Tad −T∞

, !Y (x) ≡
Yf
Yf ,∞

,δ = k
ρ∞SLCP

, !x = x
δ

,β = E
ℜTad

,ε =
T∞
Tad

Note CP T −T∞( ) = YF ,∞ −YF( )QR  and CP Tad −T∞( ) = YF ,∞QR ⇒ !T (x) = 1− !Y (x)

⇒ ρ∞SLCP
d !T
dx

− k d
2 !T
dx2 = ρ

Yf ,∞QR
Tad −T∞

Z
YF
YF ,∞

exp
−E

ℜ !T Tad −T∞( )+T∞( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⇒ ρ∞SLCP
d !T
dx

− k d
2 !T
dx2 = ρCPZ !Y exp

−E
ℜ !T Tad −T∞( )+T∞( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⇒ d !T
dx

− k
ρ∞SLCP

d 2 !T
dx2 =

ρCPZ
ρ∞SLCP

1− !T( )exp
−E

ℜTad !T
Tad −T∞
Tad

⎛
⎝⎜

⎞
⎠⎟
+
T∞
Tad

⎛

⎝⎜
⎞

⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⇒ d !T
d!x

− d
2 !T
d!x2 = Λ 1− !T( )exp

−β
!T 1− ε( )+ ε

⎛

⎝
⎜

⎞

⎠
⎟ ;Λ ≡ kZ

ρ∞CPSL
2  - burning rate eigenvalue
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1D premixed flame – numerical solution
! Boundary conditions:  x = -∞, T = 0; x = +∞, T = 1
! Cold boundary problem – reactants occurs even at x = -∞, so 

are already completely reacted by x = 0, so need to assume 
finite domain with non-zero dT/dx slope at inflow end 
(equivalent to assuming a small heat loss at cold boundary)

! Can’t assume dT/dx = 0 at cold boundary, reaction is too slow 
at T = 0  and would take enormous domain to reach flame front

! Need to see how different values of dT/dx at cold boundary 
affect solution
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1D premixed flame – Euler method
! x = 0 is cold boundary (T = 0), assume small but finite dT/dx
! “Guess” eigenvalue L

! Fixed grid spacing Dx, at every subsequent grid point use 
Euler’s method (often unstable; may need methods with higher-
order accuracy, e.g. Runge-Kutta) to estimate derivatives:

! Does T " 1 as x " +∞?  If not, adjust guess for L

d 2 T
dx2 x=0

=
d T
dx x=0

−Λ 1− 0( )exp −β
0 1−ε( )+ε
#

$
%%

&

'
((

!xi+1 = !xi + Δ!x; !Ti+1 = !Ti +
d !T
d!x

i

Δ!x

d !T
d!x

i+1

= d
!T
d!x

i

+ d
2 !T
d!x2

i

Δ!x; d
2 !T
d!x2

i+1

= d
!T
d!x

i+1

− Λ 1− !Ti+1( )exp −β
!Ti+1 1− ε( )+ ε

⎛

⎝
⎜

⎞

⎠
⎟

•6



•4

7AME 513b - Spring 2020 - Lecture 4 - Analytical/Numerical Methods I

1D premixed flame – results
For typical b = 10, e = 0.2

with Dx = 0.01 
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dT/dx at x = 0 L (Euler) L (Runge)
0.001  896439 868026

0.0001 894518 866203
0.00001 894326 866021
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1D premixed flame – numerical solution
! Why is L so big, nearly 106?

! … but chemical rate at flame temperature isn’t Z, it’s 
~ Z exp(-E/RTad) = Ze-b

! … and active zone for chemical reaction isn’t all of flame 
thickness d, it’s only the zone near the hot boundary of 
thickness ~ d/b

! … and fuel concentration in reaction zone isn’t Yf, it’s ~ Yf/b
! … so we expect Le-b/b2 should be an O(1) quantity – let’s check 

for our example (b = 10, e = 0.2):
Λexp −β( )

β 2 =
866021exp −10( )

102 = 0.393  OK

Λ ≡ kZ
ρ∞CPSL

2  =
k / ρ∞CPSL

SL
Z = δ

SL
Z = Flow time across flame zone( )× Chemical rate( )
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Euler vs 4th-order Runge-Kutta
For a 1st order ODE of the form d

!T
d!x

= F !x, !T( ), define at location !x :

k1 = F !x, !T( )Δ!x;k2 = F !x + Δ!x
2

, !T +
k1

2
⎛
⎝⎜

⎞
⎠⎟
Δ!x;k3 = F !x + Δ!x

2
, !T +

k2

2
⎛
⎝⎜

⎞
⎠⎟
Δ!x;k4 = F !x + Δ!x, !T + k3( )Δ!x

Then !T
!x+Δ!x

= !T
!x
+ 1

6
k1 + 2k2 + 2k3 + k4( )  vs.  !T

!x+Δ!x
= !T

!x
+ k1 = !T !x

+ d
!T
d!x

!x

Δ!x  (Euler)
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Scaled time (t)

Euler
Runge

dT
dt

= Z 1−T( )exp −E
T 1− ε( )+ ε
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Z = 1,E = 2,ε = 0.2,Δt = 15

Euler unstable for
large time steps!
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Euler vs 4th-order Runge-Kutta

For a 2nd order ODE of the form d
2 !T
d!x2 = F !x, !T , d

!T
d!x

⎛
⎝⎜

⎞
⎠⎟

 , define at location !x :

j1 = F !x, !T , d
!T
d!x

⎛
⎝⎜

⎞
⎠⎟
Δ!x;k1 =

d !T
d!x

Δ!x

j2 = F !x + Δ!x
2

, !T +
k1

2
, d
!T
d!x

+
j1
2

⎛
⎝⎜

⎞
⎠⎟
Δ!x;k2 =

d !T
d!x

+
j1
2

⎛
⎝⎜

⎞
⎠⎟
Δ!x

j3 = F !x + Δ!x
2

, !T +
k2

2
, d
!T
d!x

+
j2
2

⎛
⎝⎜

⎞
⎠⎟
Δ!x;k3 =

d !T
d!x

+
j2
2

⎛
⎝⎜

⎞
⎠⎟
Δ!x

j4 = F !x + Δ!x, !T + k3,
d !T
d!x

+ j3
⎛
⎝⎜

⎞
⎠⎟
Δ!x;k4 =

d !T
d!x

+ j3
⎛
⎝⎜

⎞
⎠⎟
Δ!x

d !T
d!x

!x+Δ!x

= d
!T
d!x

!x

+ 1
6
j1 + 2 j2 + 2 j3 + j4( )   vs.  d

!T
d!x

!x+Δ!x

= d
!T
d!x

!x

+ j1    (Euler)

!T
!x+Δ!x

= !T
!x
+ 1

6
k1 + 2k2 + 2k3 + k4( )   vs.  !T

!x+Δ!x
= !T

!x
+ k1    (Euler)
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1D laminar premixed flame – Runge-Kutta

! Similar to Euler for small Dx but VERY different for larger Dx

d 2 !T
d!x2

= F !x, !T ,
d !T
d!x

⎛
⎝⎜

⎞
⎠⎟
= d
!T
d!x

− Λ 1− !T( )exp −β
!T 1− ε( )+ ε

⎛

⎝
⎜

⎞

⎠
⎟
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0.015 896439 868026
0.1 1095465 868059
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Deflagrations - burning velocity
! Approximate closed-form analytical solution for 1st-order reaction

(Zeldovich, 1940)

Tad = adiabatic flame temperature; T∞ = ambient temperature

! Note still in the form SL ~ (aw)1/2, where w ~ Ze-b is an overall
reaction rate (units 1/time)

! Note also that we can treat the reaction zone as source of thermal
energy and sink of reactants according to

dT
dx x=0+

− dT
dx x=0−

= −
(Tad −T∞ )

δ
= −

(Tad −T∞ )
α / SL

= −
(Tad −T∞ )

α
2LeαZe−β

β(1− ε )
= −
Tad
β

2LeZe−β

α

and dY
dx x=0+

− dY
dx x=0−

= +
Y∞
δ
Le = +

Y∞
α / SL

Le = +
Y∞
α

2LeαZe−β

β(1− ε )
Le = +

Y∞Le
β(1− ε )

2LeZe−β

α

SL =
2Le αZ exp −β( )

β 1− ε( ) ;β ≡ E
ℜTad

,ε ≡
T∞
Tad
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Deflagrations - burning velocity
! More rigorous analysis (Bush & Fendell, 1970) using Matched

Asymptotic Expansions
! Convective-diffusive (CD) zone (no reaction) of thickness d
! Reactive-diffusive (RD) zone (no convection) of thickness d/b(1-e)

where 1/[b(1-e)] is a small parameter
! T(x) = T0(x) + T1(x)/[b(1-e)] + T2(x)/[b(1-e)]2+ …
! Collect terms of same order in small parameter
! Match T & dT/dx at all orders of b(1-e) where CD & RD zones meet

! Still same form as simple estimate (SL ~ (aw)1/2, where w ~ Ze-b is
an overall reaction rate, units 1/s), with additional constants

! Again b-2 term on reaction rate
! Reaction doesn’t occur over whole flame thickness d, only in thin zone

of thickness d/b
! Reactant concentration isn’t at ambient value Yi,∞, it’s at 1/b of this

since temperature is within 1/b of Tad

SL =
2Le αZe−β

β(1− ε )
1+ 1.344− 3(1− ε )

β(1− ε )
⎛
⎝⎜

⎞
⎠⎟
;β ≡ E

ℜTad
,ε ≡

T∞
Tad
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Deflagrations - burning velocity
! What if not a single reactant, or not 1st order reaction, or Le ≠ 1?

Mitani (1980) extended Bush & Fendell for reaction of the form

where A is the deficient reactant, e.g. fuel in a lean mixture,
resulting in

! Recall order of reaction (n) = nA+ nB
! Still same form as simple estimate, but now b-(n+1) term since n

may be something other than 1 (as Bush & Fendell assumed)
! Also have LeA-nA and LeB-nB terms – why? For fixed thermal

diffusivity (a), for higher LeA, DA is smaller, gradient of YA must be
larger to match with T profile, so concentration of A is higher in
reaction zone

SL = 2αZe−βYA,∞
νA+νB−1 νA νB νA( )νB

β(1−ε)( )νA+νB+1
1

LeA
−νA

1
LeB

−νB
G

#

$
%
%

&

'
(
(

1/2

G ≡ yνA y+ a( )νB e−y dy
0

∞

∫  ;   a ≡ β(1−ε)(φ −1) / LeB;φ = equivalence ratio

νAA+νBB→ products; ω = ZYA
νAYB

νB exp −Ea /ℜT( )
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Sidebar: calculating Lewis numbers
! Lewis number (Le) is the ratio of the thermal diffusivity of the entire 

mixture (since heat is conducted through the entire mixture) to the 
mass diffusivity of the reactant of interest into the entire mixture

! Example: lean (f = 0.5) CH4-air mixture: 0.25 CH4 / 1 O2 / 3.77 N2.
! From CSU website: at 1 atm, 300K, DCH4 = 0.23068 cm2/s (called 

"Mixture Diffusivity”)
! Thermal diffusivity of the entire mixture (a) = 0.22438 cm2/s) (called 

“Mixture Thermal Diffusivity") 
! LeCH4 = 0.22438/0.23068 = 0.9727

! For non-premixed flames, if you have pure fuel or O2 on one side, 
you can't calculate Le since you need ≥ 2 species to have a D, but 
there are products (CO2 and H2O) diffusing towards the reactant 
boundaries, so include a small amount of stoichiometric products 
(e.g. 1% CO2 and 2% H2O if CH4 is the fuel) with the reactants to 
obtain a D
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! Mass + momentum conservation, 2D, const. density (r)

(ux, uy = velocity components in x, y directions)
admit an exact, steady (∂/∂t = 0) solution which is the same with or 
without viscosity (!!!):

S = rate of strain (units s-1)

! Similar result in 2D axisymmetric (r, z) geometry:

Very simple flow characterized by a single parameter S, easily 
implemented experimentally using counter-flowing round jets…

∂ux
∂t

+ux
∂ux
∂x

+uy
∂ux
∂ y

=- 1
ρ
∂P
∂x

+µ
∂ 2ux
∂x2

+
∂ 2ux
∂y2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   (x momentum)

∂uy
∂t

+ux
∂uy
∂x

+uy
∂uy
∂ y

=- 1
ρ
∂P
∂ y

+µ
∂ 2uy
∂x2

+
∂ 2uy
∂y2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟   (y momentum)

∂ux
∂x

+
∂uy
∂ y

= 0                                                       (mass conservation)

AME 513b - Spring 2020 - Lecture 4 - Analytical/Numerical Methods I

1D premixed flame - stretched

ux=Σx, uy=-Σy,P = − ρΣ
2

2
x2 + y2( )

€ 

ur = -Σr /2, uz = Σz
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1D premixed flame - stretched
! Instead of ru = constant as in plane flame, u = -Sx

u dT
dx

−
k
ρCP

d 2T
dx2 =

q '''
ρCP

;u = −Σx⇒−ρΣxCP
dT
dx

− k d
2T
dx2 = ρQRZYF exp −E

ℜT
%

&
'

(

)
*

⇒
Σx
α
dT
dx

+
d 2T
dx2 = −

ρQRZYF
k

exp −E
ℜT
%

&
'

(

)
*;

Let x = x
2α / Σ

⇒
Σx
2α

2α / Σ
2α / Σ

dT
dx

+
1
2

2α / Σ
2α / Σ

d 2T
dx2 = −

ρQRZYF
2k

exp −E
ℜT
%

&
'

(

)
*

⇒ x dT
dx

+
1
2
d 2T
dx2 = −

αρQRZYF
kΣ

exp −E
ℜT
%

&
'

(

)
*= −

QRZYF
CPΣ

exp −E
ℜT
%

&
'

(

)
*

Let  T = T −T∞
Yi,∞QR /CP

=
T −T∞
Tad −T∞

⇒ x d
T

dx
+

1
2
d 2 T
dx2 = −

ZYF,∞QR

CP Tad −T∞( )Σ
YF
YF,∞

exp −E
ℜT
%

&
'

(

)
*

⇒ x d
T

dx
+

1
2
d 2 T
dx2 = −

Z
Σ
YF exp −E

ℜT
%

&
'

(

)
*= −

Z
Σ

1− T( )exp −E
ℜT
%

&
'

(

)
*= −

Z
Σ

1− T( )exp −E
ℜT
%

&
'

(

)
*

⇒ x d
T

dx
+

1
2
d 2 T
dx2 = −Da 1− T( )exp −β

T 1−ε( )+ε
%

&
''

(

)
**
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1D premixed flame - stretched
! In addition to the unstretched flame parameters b and e, there is a 

stretch rate parameter Da = Z/S
! Need to determine Da at extinction and effect of Da on burning 

velocity SL relative to unstretched value SL,o up to extinction limit:

! Hot boundary condition: by symmetry, dT/dx = 0 at x = 0
! Solution method: pick Da, find T at x = 0 that satisfies cold 

boundary condition: T " 0 as x " ∞ (in practice reverse is easier!)

Recall !x ≡ x

2α / Σ
,Da ≡ Z

Σ

At flame location:  SL = −u = − −Σx f( ) = Σ!x f
2α
Σ

= !x f 2αΣ = 2αZ
!x f
Da

    ⇒ SL = 2αZ
!x

Da

Also Λ ≡ kZ
ρ∞CPSL,o

2 =
α∞Z
SL,o

2 ⇒ SL,o = α∞Z
1
Λ

⇒
SL
SL,o

= 2Λ
!x

Da
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1D premixed flame - stretched
! Determine Da at extinction and effect of Da on burning velocity 

up to extinction limit
! Why doesn’t SL/SL,o " 1 as Da " ∞? Flame location defined as 

location of maximum reaction rate, which can’t be at T = 1 since 
there’s no fuel there! {max. rate near (1 – 1/b)}
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1D premixed flame - stretched
! Recall stretched non premixed flame –outside of reaction zone

!x
d !T
d!x

+ 1
2
d 2 !T
d!x2 = 0⇒ !T !x( ) = C1erf !x( )+C2

Boundary conditions for source at !x = 0 are  !x = 0 : !T = !To; !x→∞ : !T = 0

⇒C1 = − !To ,C2 = !To ⇒ !T !x( ) = !To 1− erf !x( )⎡⎣ ⎤⎦
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Flames in spherical geometry
! Assumptions: 1D spherical; ideal gases; adiabatic (except for

possible ignition source Q(r,t) to be employed later); 1 limiting
reactant (call it “fuel”); 1-step overall reaction; rD, k, CP, etc.
constant; low Mach #; no body forces

! Governing equations for mass, energy & species
conservations (YF = limiting reactant mass fraction; QR = its
heating value)
∂ρ
∂ t

+ 1
r 2

∂
∂ r

r 2ρu( ) = 0; ideal gas with P = constant ⇒  ρT = ρ∞T∞ = constant

ρCp
∂T
∂ t

+ ρCp
1
r 2

∂
∂ r

r 2uT( ) = kr 2

∂
∂ r

r 2 ∂T
∂ r

⎛
⎝⎜

⎞
⎠⎟
+ ρQRYFZ exp

E
ℜT

⎛
⎝⎜

⎞
⎠⎟

ρ
∂YF
∂ t

+ ρu 1
r 2

∂
∂ r

r 2YF( ) = ρD
r 2

∂
∂ r

r 2 ∂ y
∂ r

⎛
⎝⎜

⎞
⎠⎟
− ρYFZ exp

E
ℜT

⎛
⎝⎜

⎞
⎠⎟
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Flames in spherical geometry
! Non-dimensionalize (recall Tad = T∞ + Y∞QR/CP)

leads to, for mass, energy and species conservation

!T ≡ T
Tad
;τ ≡ te−βZ;R ≡ r e−βZ

α
;U ≡ u

Zαe−β
;β ≡ E

ℜTad

ε ≡
T∞
Tad
; !Y ≡

YF
YF ,∞

;Le ≡ k
ρCpD

;Ω ≡ Q(r,t)
ρ∞CpT∞e

−βZ

∂ 1/ !T( )
∂τ

+ 1
R2

∂
∂ R

R2 1!T
U

⎛
⎝⎜

⎞
⎠⎟
= 0

∂ !T
∂τ

+U 1
R2

∂
∂ R

R2 !T( ) = !Tε
1
R2

∂
∂ R

R2 ∂
!T

∂ R
⎛
⎝⎜

⎞
⎠⎟
+ 1− ε( ) !Y exp −β 1

!T
−1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +Ω(R,τ ) !T

∂ !Y
∂τ

+U 1
R2

∂
∂ R

R2 !Y( ) = 1
Le
!T
ε
1
R2

∂
∂ R

R2 ∂
!Y

∂ R
⎛
⎝⎜

⎞
⎠⎟
− !Y exp −β 1

!T
−1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
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Flames in spherical geometry
! Initial & boundary conditions

! Initial condition: T = T∞, YF = YF,∞, U = 0 everywhere)

! At infinite radius, T = T∞, y = y∞,U = 0 for all times)

! Symmetry condition at r = 0 for all times

!T (R,0) = ε; !Y (R,0) = 1;U (R,0) = 0 for all R

!T (R,τ ) = ε; !Y (R,τ ) = 1;U (R,τ ) = 0 as R →∞

∂ !T
∂ R

= ∂ !Y
∂ R

= ∂U
∂ R

= 0 at R=0 and as R →∞
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Flames in spherical geometry
! Special case: steady (?) solutions with reaction confined to a thin

zone (large b) at (unknown) R = R* with (unknown) temperature T*
1
R2

∂
∂ R

R2 1
!T
U

⎛
⎝⎜

⎞
⎠⎟
= 0⇒U = 0  (zero convection velocity everywhere)

⇒ 0 =
!T
ε

1
R2

∂
∂ R

R2 ∂ !T
∂ R

⎛
⎝⎜

⎞
⎠⎟
+ 1− ε( ) !Y exp −β 1

!T
−1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  (energy eqn.; steady, U = 0)

Outside reaction zone: 
!T
ε

1
R2

∂
∂ R

R2 ∂ !T
∂ R

⎛
⎝⎜

⎞
⎠⎟
= 0⇒ !T (R) =

C1

R
+C2

!T = !T *  at R = R*  and !T = ε  at R = ∞⇒ !T (R) = ε  + !T * − ε( ) R
*

R
; d
!T
dR R=R*

= −
!T * − ε
R*

and 0 = 1
Le
!T
ε

1
R2

∂
∂ R

R2 ∂ !Y
∂ R

⎛
⎝⎜

⎞
⎠⎟
− !Y exp −β 1

!T
−1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  (reactant eqn.)

Outside reaction zone: 1
Le
!T
ε

1
R2

∂
∂ R

R2 ∂ !Y
∂ R

⎛
⎝⎜

⎞
⎠⎟
= 0⇒ !Y (R) =

C1

R
+C2

!Y = 0 at R = R*  and !Y = 1 at R = ∞⇒ !Y (R) = 1− R
*

R
; d
!Y
dR R=R*

= 1
R*
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Flames in spherical geometry
! Matching at R = R*

! This is a flame ball solution - note for Le < > 1, T* > < Tad; for Le = 1,
T* = Tad

! For adiabatic flames (as here) R* = RZ is called the Zeldovich radius
! Generally unstable

! R < RZ: shrinks and extinguishes
! R > RZ: expands and develops into steady flame
! RZ related to requirement for initiation of steady flame - expect Emin ~

Rz3
! … but stable for a few carefully (or accidentally) chosen mixtures

− kA dT
dr R=R*

= QR ρDA
dY
dr R=R*

=
CP Tad −T∞( )

Y∞
ρDAdY

dr R=R*

− d
!T
dR R=R*

=
Tad −T∞( )
Tad

ρCPD
k

d !Y
dR

R=R*

= 1− ε
Le

d !Y
dR R=R*

− −
!T * − ε
R*

⎛
⎝⎜

⎞
⎠⎟
= 1− ε
Le

1
R* ⇒ !T * = ε + 1− ε

Le
 or T * = T∞ +

Tad −T∞
Le
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Steady spherical flames (?!?)

d !T
dR

R=R*+

= −
!T * − ε
R* ;

d !T
dR

R=R*−

= 0; recall 
dT
dx x=0+

− dT
dx x=0−

= −
Tad
β

2LeZe−β

α

⇒ RZ =
β * 1− ε( )
Le

αeβ
*

2LeZ
;β * ≡ E

ℜT *

or Rz =
δ
Le
exp

β
2

1
!T * −1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

;  recall δ = α
SL

;SL =
2Le αZ
β(1− ε )

exp
−β
2

⎛
⎝⎜

⎞
⎠⎟
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Steady spherical flames (?!?)
! How can a spherical flame not propagate???

Space experiments show ~ 1 cm
diameter flame balls possible
Movie: 500 sec elapsed time
6.75% H2 – 13.5% O2 – 79.75% SF6, 1 atm
LeF ≈ 0.06
Field of view 30 cm x 22 cm

Temperature

Fuel concentration

T ~ 1/r

Reaction zone

Interior filled
with combustion

products

Fuel & oxygen 
diffuse inward

Heat & 
products

diffuse outward

C ~ 1-1/r
T*

T∞
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f
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