

Outline	USC Viterbi School of Engineering
 Review of conservation equations Premixed flame structure & propagation rate Nonpremixed flames Flat unstretched flames Stretched flames Liquid fuel droplet combustion 	
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed	l flames 2

Conservation eqns. - energy & species
We construct the product of the energy and species equations, non-dimensionalize

$$\begin{bmatrix} \frac{\partial Y_i}{\partial t} + (\vec{u} \cdot \vec{\nabla} Y_i) \end{bmatrix} - D\vec{\nabla} \cdot (\vec{\nabla} Y_i) = \frac{M_i \dot{\omega}_i}{\rho} \Rightarrow \begin{bmatrix} \frac{\partial Y_i}{\partial t} + (\vec{u} \cdot \vec{\nabla} Y_i) \end{bmatrix} - \frac{\alpha}{Le} \vec{\nabla} \cdot (\vec{\nabla} Y_i) = \frac{M_i \dot{\omega}_i}{\rho}$$

$$\begin{bmatrix} \frac{\partial T}{\partial t} + (\vec{u} \cdot \vec{\nabla} T) \end{bmatrix} - \frac{k}{\rho C_p} \vec{\nabla} \cdot (\vec{\nabla} T) = \dot{q}^{\prime\prime\prime} = -\frac{M_i \dot{\omega}_i Q_R}{\rho C_p}; \quad Let \ \tilde{T} = \frac{T - T_x}{Y_{i,x} Q_R / C_p} = \frac{T - T_x}{T_{ad} - T_x}, \ \tilde{Y} = \frac{Y_i}{Y_{i,x}}$$

$$\Rightarrow \begin{bmatrix} \frac{\partial \tilde{T}}{\partial t} + (\vec{u} \cdot \vec{\nabla} T) \end{bmatrix} - \alpha \vec{\nabla} \cdot (\vec{\nabla} T) = -\frac{M_i \dot{\omega}_i}{\rho Y_{i,x}}; \quad \begin{bmatrix} \frac{\partial \tilde{Y}}{\partial t} + (\vec{u} \cdot \vec{\nabla} Y) \end{bmatrix} - \frac{\alpha}{Le} \vec{\nabla} \cdot (\vec{\nabla} Y) = \frac{M_i \dot{\omega}_i}{\rho Y_{i,x}}$$
Add species & energy equations for $Le = 1: \begin{bmatrix} \frac{\partial (\tilde{T} + \tilde{Y})}{\partial t} + (\vec{u} \cdot \vec{\nabla} (\tilde{T} + \tilde{Y})) \end{bmatrix} - \alpha \vec{\nabla} \cdot (\vec{\nabla} (\tilde{T} + \tilde{Y})) = 0$

$$\Rightarrow \text{ For Le = 1, } \ \tilde{T} + \ \tilde{Y} = 1 \text{ is constant, } i.e., \text{ doesn't vary with reaction}$$

$$\Rightarrow \text{ Unburned gas: } \ \tilde{T} = 0, \ \tilde{Y} = 1; \text{ burned gas: } \ \tilde{T} = 1, \ \tilde{Y} = 0$$

$$\Rightarrow \text{ If Le is not exactly 1, small deviations in Le (thus T) will have large impact on ω due to high activation energy.

$$\Rightarrow \text{ Energy equation may have heat loss in q''' term, not present in species conservation equation, which would break the symmetry of the equations even for Le = 1.$$$$

Deflagrations - burning velocity USC Viterb	i eering
$\begin{array}{l} \succ \mbox{ Combine (i) and (ii)} \\ & \succ \delta = k/\rho C_p S_L = \alpha/S_L \ (\delta = flame thickness) \ (same as Lecture 7) \\ & \succ \ Recall \ \alpha = k/\rho C_p = thermal diffusivity \ (units \ length^2/time) \\ & \succ \ For \ air \ at \ 300K \ \& \ 1 \ atm, \ \alpha \approx 0.2 \ cm^2/s \\ & \succ \ For \ gases \ \alpha \approx \nu \ (\nu = kinematic \ viscosity) \\ & \succ \ For \ gases \ \alpha \approx \nu \ (\nu = kinematic \ viscosity) \\ & \succ \ For \ gases \ \alpha \sim \ P^{-1}T^{1.7} \ since \ k \sim \ P^0T^{.7}, \ \rho \sim \ P^1T^{-1}, \ C_p \sim \ P^0T^0 \\ & \succ \ For \ typical \ stoichiometric \ hydrocarbon-air \ flame, \ S_L \approx 40 \ cm/s, \ thus \\ & \approx \ \alpha/S_L \approx \ 0.005 \ cm \ (!) \ \ (Actually \ when \ properties \ are \ temperature$	• •
averaged, $\delta \approx 4\alpha/S_{L} \approx 0.02 \text{ cm}$ - still small!) > Combine (ii) and (iii)	
S _L = (α ω) ^{1/2} ω = overall reaction rate = (d[fuel]/dt)/[fuel] _∞ (units 1/s) > With S _L ≈ 40 cm/s, α ≈ 0.2 cm ² /s, ω ≈ 1600 s ⁻¹	
> Heat release rate per unit volume = (enthalpy flux) / (volume) = $(\rho C_p S_L A \Delta T)/(A \delta) = \rho C_p S_L/k)(k \Delta T)/\delta = (k \Delta T)/\delta^2$	
 = (0.07 W/mk)(1900k)/(0.0002 m)² = 3 x 10³ W/m³ !!! > Moral: flames are thin, fast and generate a lot of heat! AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames 	0

Deflagrations - summary	USC Viterbi
 These relations show the effect of T_{ad} (depends on furstoichiometry), α (depends on diluent gas (usually N₂) (depends on fuel, T, P) and pressure (engine condition laminar burning rates Re-emphasize: these estimates are based on an <i>over reaction rate</i>; real flames have 1000s of individual real between 100s of species - but we can work backward experiments or detailed calculations to get these estimates the overall reaction rate parameters 	el &) & P), ω n) on <i>rall</i> actions ls from nates for
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed f	lames ¹⁴

1D planar steady nonpremixed flame Solution Structure Functions $u \frac{dY_F}{dx} - D_F \frac{d^2Y_F}{dx^2} = 0; \text{ boundary conditions } Y_F = Y_{F,0} \text{ at } x = 0, Y_F = 0 \text{ at } x = x_f$ $u \frac{dY_{\alpha x}}{dx} - D_{\alpha x} \frac{d^2Y_{\alpha x}}{dx^2} = 0; \text{ boundary conditions } Y_{\alpha x} = Y_{\alpha x,L} \text{ at } x = L, Y_{\alpha x} = 0 \text{ at } x = x_f$ $u \frac{dY_{\alpha x}}{dx} - D_{\alpha x} \frac{d^2Y_{\alpha x}}{dx^2} = 0; \text{ boundary conditions } Y_{\alpha x} = Y_{\alpha x,L} \text{ at } x = L, Y_{\alpha x} = 0 \text{ at } x = x_f$ $\Rightarrow Y_F = Y_{F,0} \frac{1 - e^{(uD_F)(x-x_f)}}{1 - e^{-(uD_F)x_f}}; Y_{\alpha x} = Y_{\alpha x,L} \frac{1 - e^{(uD_{\alpha x})(x-x_f)}}{1 - e^{(uD_{\alpha x})(L-x_f)}}$ Define non-dimensional parameters: $Pe = \frac{uL}{\alpha}, Le_{\alpha x} = \frac{\alpha}{D_{\alpha x}}, Le_F = \frac{\alpha}{D_F}, \tilde{x} = \frac{x}{L}, S = \frac{v_{\alpha x}M_{\alpha x}}{v_FM_F} \frac{Y_{F,0}}{Y_{\alpha x,L}}$ $\Rightarrow \frac{Y_F}{Y_{F,0}} = \frac{1 - e^{PeLe_f(\tilde{x}-\tilde{x}_f)}}{1 - e^{-PeLe_{\alpha}(\tilde{x}-\tilde{x}_f)}}; \frac{Y_{\alpha x}}{Y_{\alpha x,L}} = \frac{1 - e^{PeLe_{\alpha x}(\tilde{x}-\tilde{x}_f)}}{1 - e^{-PeLe_{\alpha x}(\tilde{x}-\tilde{x}_f)}}$ > Note that for Pe \Rightarrow 0, $e^{Pe} \approx$ 1 + Pe, thus Y profiles become linear $\frac{Y_F}{Y_{F,0}} = \frac{1 - e^{PeLe_F(\tilde{x}-\tilde{x}_f)}}{1 - (e^{-PeLe_{\alpha x}(\tilde{x}-\tilde{x}_f)})} \approx \frac{1 - (1 + PeLe_F(\tilde{x} - \tilde{x}_f))}{1 - (1 - PeLe_F\tilde{x}_f)} \approx 1 - \frac{\tilde{x}}{\tilde{x}_f}; \frac{Y_{\alpha x}}{Y_{\alpha x,L}} = \frac{1 - e^{PeLe_{\alpha x}(\tilde{x}-\tilde{x}_f)}}{1 - e^{PeLe_{\alpha x}(\tilde{x}-\tilde{x}_f)}} \approx \frac{\tilde{x} - \tilde{x}_f}{1 - \tilde{x}_f}$ > ... but how to determine flame location x_f ? **AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames**

1D planar steady nonpremixed flame	Viterbi School of Engineering
 Expression for flame position (x_f) not solvable in closed form but look at special cases (next page) x_f depends on the stoichiometric parameter (S), Lewis numbers o oxidant, and the strength of convection relative to diffusion as que the Peclet number: 	we can of fuel and antified by
<u>Diffusion time scale</u> $\sim \frac{L^2 / \alpha}{1 - \mu L} = P e$	
Convection time scale $L/u = \alpha^{-1}c$	
 S is the ratio of mass of oxidizer stream to mass of fuel stream n make a stoichiometric mixture of the two Also often reported in non-premixed flame studies is the stoichion mixture fraction Z_{st} = 1/(1+S) = mass fraction of fuel stream in a stoichiometric mixture of fuel and oxidant streams 	eeded to netric
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames	20

1D planar steady nonpremixed flame
Energy equation:
Fuel side: $u \frac{dT}{dx} - \frac{k}{\rho C_P} \frac{d^2T}{dx^2} = 0$; BCs: $T = T_{F,0}$ at $x = 0$, $T = T_f$ at $x = x_f$
Oxidizer side: $u \frac{dT}{dx} - \frac{k}{\rho C_P} \frac{d^2T}{dx^2} = 0$; BCs: $T = T_{ox,L}$ at $x = L$, $T = T_f$ at $x = x_f$
> Solutions
Fuel side: $T(x) = T_{F,0} + (T_f - T_{F,0}) \frac{1 - e^{x_f}}{1 - e^{(u/\alpha)x_f}} = T_{F,0} + (T_f - T_{F,0}) \frac{1 - e^{x_f}}{1 - e^{Pe \bar{x}_f}}$
Oxidizer side: $T = T_f - (T_f - T_{ox,L}) \frac{1 - e^{(u/\alpha)(x - x_f)}}{1 - e^{(u/\alpha)(L - x_f)}} = T_f - (T_f - T_{ox,L}) \frac{1 - e^{Pe(\bar{x} - \bar{x}_f)}}{1 - e^{Pe(1 - \bar{x}_f)}}$
> Note again that as Pe \rightarrow 0, T profiles become linear
Fuel side: $T(\tilde{x}) = T_{F,0} + (T_f - T_{F,0}) \frac{1 - e^{Pe \tilde{x}}}{1 - e^{Pe \tilde{x}_f}} \approx T_{F,0} + (T_f - T_{F,0}) \frac{\tilde{x}}{\tilde{x}_f}$
Oxidizer side: $T(\tilde{x}) = T_f - \left(T_f - T_{ox,L}\right) \frac{1 - e^{Pe\left(\tilde{x} - \tilde{x}_f\right)}}{1 - e^{Pe\left(1 - \tilde{x}_f\right)}} \approx T_f - \left(T_f - T_{ox,L}\right) \frac{\tilde{x} - \tilde{x}_f}{1 - \tilde{x}_f}$
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames 22

1D planar steady nonpremixed flame
School of Engineering
Matching: heat release = (fuel flux to reaction zone) x (fuel heating value) = conductive heat flux away from reaction zone on both sides

$$-Q_R \rho D_F \frac{dY_F}{dx}\Big|_{x=x_{f-}} = k \frac{dT}{dx}\Big|_{x=x_{f-}} - k \frac{dT}{dx}\Big|_{x=x_{f+}} \Rightarrow$$

$$\frac{Q_R \rho D_F Y_{F,0} e^{-(u/D_F)x_f}}{1 - e^{-(u/D_F)x_f}} \frac{u}{D_F} e^{(ux/D_F)} = -\frac{k (T_f - T_{F,0})}{1 - e^{(u/\alpha)x_f}} \frac{u}{\alpha} e^{(u/\alpha)x_f} - \frac{k (T_f - T_{\alpha,L}) e^{-(u/\alpha)x_f}}{1 - e^{(u/\alpha)(L-x_f)}} \frac{u}{\alpha} e^{(u/\alpha)x_f}$$

$$\Rightarrow \frac{\rho Q_R Y_{F,0}}{1 - e^{-(u/D_F)x_f}} = \frac{\rho C_P (T_f - T_{F,0})}{1 - e^{-(u/\alpha)(x_f)}} - \frac{\rho C_P (T_f - T_{\alpha,L})}{1 - e^{(u/\alpha)(L-x_f)}}$$

$$\Rightarrow \frac{Q_R Y_{F,0} / C_P}{1 - e^{-(u/\alpha)(\alpha/D_F)(x_f/L)}} = \frac{T_f - T_{F,0}}{1 - e^{-(u/\alpha)(x_f/L)}} - \frac{T_f - T_{\alpha,L}}{1 - e^{(u/D_F)(x_f/L)}}$$

$$\Rightarrow \frac{Q_R Y_{F,0} / C_P}{1 - e^{-Pete_F x_f}} = \frac{T_f - T_{F,0}}{1 - e^{-Pe_F x_f}} - \frac{T_f - T_{\alpha,L}}{1 - e^{Pe_F x_f}}$$
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames

$$\frac{dZ}{dx} = \frac{1}{1+S} \left(S \frac{1}{Y_{F,0}} \frac{dY_F}{dx} - \frac{1}{Y_{\alpha,L}} \frac{dY_{\alpha}}{dx} \right); \frac{d^2Z}{dx^2} = \frac{1}{1+S} \left(S \frac{1}{Y_{F,0}} \frac{d^2Y_F}{dx^2} - \frac{1}{Y_{\alpha,L}} \frac{d^2Y_{\alpha}}{dx^2} \right) \\
u \frac{dY_F}{dx} - D_F \frac{d^2Y_F}{dx^2} = 0; u \frac{dY_{\alpha}}{dx} - D_{\alpha x} \frac{d^2Y_{\alpha}}{dx^2} = 0; Le_F = Le_{\alpha x} \Rightarrow D_F = D_{\alpha x} = D \\
\Rightarrow u \frac{S}{1+S} \frac{1}{Y_{F,0}} \frac{dY_F}{dx} - D \frac{S}{1+S} \frac{1}{Y_{F,0}} \frac{d^2Y_F}{dx^2} = 0; -u \frac{1}{1+S} \frac{1}{Y_{\alpha,L}} \frac{dY_{\alpha}}{dx} + D \frac{1}{1+S} \frac{1}{Y_{\alpha,L}} \frac{d^2Y_{\alpha}}{dx^2} = 0 \\
Add : u \frac{d}{dx} \left(\frac{S}{1+S} \frac{1}{Y_{F,0}} \frac{dY_F}{dx} - \frac{1}{1+S} \frac{1}{Y_{\alpha,L}} \frac{dY_{\alpha}}{dx} \right) - D \frac{d^2}{dx^2} \left(\frac{S}{1+S} \frac{1}{Y_{F,0}} \frac{dY_F}{dx} - \frac{1}{1+S} \frac{1}{Y_{\alpha,L}} \frac{dY_{\alpha}}{dx} \right) = 0 \\
\Rightarrow u \frac{dZ}{dx} - D \frac{d^2Z}{dx^2} = 0; \\
Boundary conditions Z = 1 at x = 0, Z = 0 at x = L \Rightarrow Z(\tilde{x}) = \frac{e^{Pe\tilde{x}} - e^{Pe}}{1-e^{Pe}}; \tilde{x} = \frac{x}{L}, Pe = \frac{uL}{D} \\
At flame front Z(\tilde{x}_f) = Z_{st} = \frac{1}{1+S} \Rightarrow \tilde{x}_f = \frac{1}{Pe} \ln\left(\frac{1+Se^{Pe}}{1+S}\right) as before$$
33

1D stretched flame USC Viterbi School of Engineering	ng
Species conservation:	-
$\rho u \frac{dY_F}{dx} - \rho D \frac{d^2 Y_F}{dx^2} = 0 \Longrightarrow -\Sigma x \frac{dY_F}{dx} - \alpha Le \frac{d^2 Y_F}{dx^2} = 0;$	
Let $\tilde{x} = \frac{x}{\sqrt{2\alpha/\Sigma}} \Rightarrow \tilde{x}\frac{dY_F}{d\tilde{x}} + \frac{1}{2Le_F}\frac{d^2Y_F}{d\tilde{x}^2} = 0 \Rightarrow Y_F(\tilde{x}) = C_1 erf(\sqrt{Le_F}\tilde{x}) + C_2$	
Recall $erf(a) = \frac{2}{\sqrt{\pi}} \int_0^a e^{-t^2} dt$	
Fuel side boundary conditions: $\tilde{x} = \tilde{x}_f, Y_F = 0; \tilde{x} = -\infty, Y_F = Y_{F,-\infty}$	
$\Rightarrow Y_F(\tilde{x}) = \frac{Y_{F,-\infty}\left(erf\left(\sqrt{Le_F}\tilde{x}_f\right) - erf\left(\sqrt{Le_F}\tilde{x}\right)\right)}{1 + erf\left(\sqrt{Le_F}\tilde{x}_f\right)}; \frac{dY_F}{d\tilde{x}}\Big _{\tilde{x}=\tilde{x}_f} = -\frac{2\sqrt{Le_F}}{\sqrt{\pi}}\frac{Y_{F,-\infty}e^{-Le_F\tilde{x}_f^2}}{1 + erf\left(\sqrt{Le_F}\tilde{x}_f\right)}$	
Oxidizer side boundary conditions: $\tilde{x} = \tilde{x}_f, Y_{ox} = 0; \tilde{x} = \infty, Y_{ox} = Y_{ox,\infty}$	
$\Rightarrow Y_{ox}(\tilde{x}) = -\frac{Y_{ox,\infty}\left(erf\left(\sqrt{Le_{ox}}\tilde{x}_{f}\right) - erf\left(\sqrt{Le_{ox}}\tilde{x}_{f}\right)\right)}{1 - erf\left(\sqrt{Le_{ox}}\tilde{x}_{f}\right)}; \frac{dY_{ox}}{d\tilde{x}}\Big _{\tilde{x}=\tilde{x}_{f}} = \frac{2\sqrt{Le_{ox}}}{\sqrt{\pi}}\frac{Y_{ox,\infty}e^{-Le_{ox}\tilde{x}_{f}^{2}}}{1 - erf\left(\sqrt{Le_{ox}}\tilde{x}_{f}\right)}$	
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames 37	

1D stretched flame USC Viterbi	ering
Energy equation:	
$\rho u C_P \frac{dT}{dx} - k \frac{d^2 T}{dx^2} = 0 \Longrightarrow -\Sigma x \frac{dT}{dx} - \alpha \frac{d^2 T}{dx^2} = 0;$	
Again let $\tilde{x} = \frac{x}{\sqrt{2\alpha/\Sigma}} \Rightarrow \tilde{x}\frac{dT}{d\tilde{x}} + \frac{1}{2}\frac{d^2T}{d\tilde{x}^2} = 0 \Rightarrow T(\tilde{x}) = C_1 erf(\tilde{x}) + C_2$	
Fuel side boundary conditions: $\tilde{x} = \tilde{x}_f, T = T_f; \tilde{x} = -\infty, T = T_{F,-\infty}$	
$\Rightarrow T(\tilde{x}) = \frac{\left(T_f - T_{F, -\infty}\right)erf(\tilde{x}) + T_{F, -\infty}erf(\tilde{x}_f) + T_f}{1 + erf(\tilde{x}_f)}; \frac{dT}{d\tilde{x}}\Big _{\tilde{x} = \tilde{x}_f} = \frac{2}{\sqrt{\pi}} \frac{\left(T_f - T_{F, -\infty}\right)e^{-\tilde{x}_f^2}}{1 + erf(\tilde{x}_f)}$	
Oxidizer side boundary conditions: $\tilde{x} = \tilde{x}_f, T = T_f; \tilde{x} = +\infty, T = T_{ox, -\infty}$	
$\Rightarrow T(\tilde{x}) = -\frac{\left(T_f - T_{ox,+\infty}\right)erf(\tilde{x}) + T_{ox,+\infty}erf(\tilde{x}_f) - T_f}{1 - erf(\tilde{x}_f)}; \frac{dT}{d\tilde{x}}\Big _{\tilde{x} = \tilde{x}_f} = -\frac{2}{\sqrt{\pi}}\frac{\left(T_f - T_{ox,+\infty}\right)e^{-\tilde{x}_f^2}}{1 - erf(\tilde{x}_f)}$	-
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames	8

Droplet combustionUse Vite bised of Engineering> Analysis similar to 1D planar flame cases already discussed but
need to use 1D steady spherical version of convection-diffusion
conservation equations for Y_f, Y_{ox} and TMass conservation: $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0 \Rightarrow \frac{1}{r^2} \frac{d}{dr} (r^2 \rho u) = 0$
 $\Rightarrow \dot{m} = 4\pi r^2 \rho u = \text{ constant (compared to } \rho u = \text{ constant for planar case})$ Energy conservation: $\rho \left[\frac{\partial h}{\partial t} + (\vec{u} \cdot \vec{\nabla} h) \right] - \vec{\nabla} \cdot (k \vec{\nabla} T) = \dot{q}^{('')} \Rightarrow \rho C_p \vec{u} \cdot \vec{\nabla} T - k \vec{\nabla} \cdot \vec{\nabla} T = 0$ $\Rightarrow \rho C_p u \frac{dT}{dr} - \frac{k}{r^2} \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0$ Species conservation: $\rho \left[\frac{\partial Y_i}{\partial t} + (\vec{u} \cdot \vec{\nabla} Y_i) \right] - \vec{\nabla} \cdot (\rho D \vec{\nabla} Y_i) = M_i \dot{\omega}_i \Rightarrow \rho \vec{u} \cdot \vec{\nabla} Y_i - \vec{\nabla} \cdot (\rho D \vec{\nabla} Y_i) = 0$ $\Rightarrow \rho u \frac{dY_i}{dr} - \frac{\rho D}{r^2} \frac{d}{dr} \left(r^2 \frac{dY_i}{dr} \right) = 0$ AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames

Droplet combustion USC Vite	erbi Engineering
> Unknowns	
 Flame temperature T_f and flame location r_f (as with gaseous flam cases previously discussed) 	е
Fuel mass flux m = ρuA = ρ _d u _d (4πr _d ²) from droplet surface (expressed in Pe in the following analysis) (new, was a known quantity in previous cases)	
» Note that ṁ must be constant, but the fuel mass flow is not; the fuel disappears by r = r _f , but the total mass flow (i.e. of inert and products) must be constant out to r = ∞)
 Fuel concentration at droplet surface Y_{F,d} or stoichiometric parameter S (new, was a known quantity in previous cases) 	
 2 more unknowns, so need 2 more equations (total of 4) » Reactant diffusive fluxes into flame sheet in stoichiometric proportions (same as gaseous flames) 	
» Fuel enthalpy flux into flame sheet = thermal enthalpy flux out (by heat conduction) (same as gaseous flames)	
 » Energy balance at droplet surface (new) » Mass balance at droplet surface (new) 	
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames	48

$$\begin{aligned} & \text{Droplet combustion} \\ & \text{Femperature } (\mathbf{r}_{d} \leq \mathbf{r} \leq \mathbf{r}_{f}) \\ & \rho C_{p} u \frac{dT}{dr} - \frac{k}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{dT}{dr} \right) = 0, \\ & \vec{m} = 4\pi r^{2} \rho u \Rightarrow Pe \frac{dT}{d\tilde{r}} = \frac{d}{d\tilde{r}} \left(\tilde{r}^{2} \frac{dT}{d\tilde{r}} \right) \\ & \Rightarrow PeT + C_{1} = r^{2} \frac{dT}{dr} \Rightarrow T = C_{1}^{\prime} + C_{2}^{\prime} e^{-Peir}; \\ & \text{BCs: } \tilde{r} = 1, T = T_{d} \text{ and } \tilde{r} = \tilde{r}_{f}, T = T_{f} \\ & \Rightarrow T(\tilde{r}) = \frac{\left(T_{f} - T_{d}\right)e^{-Pei\tilde{r}} - \left(T_{f}e^{-Pe} - T_{d}e^{-Pei\tilde{r}_{f}}\right)}{e^{-Pei\tilde{r}_{f}} - e^{-Pe}}; \\ & \frac{dT}{dr} \bigg|_{\tilde{r}=1} = Pe \frac{\left(T_{f} - T_{d}\right)e^{-Pei}}{e^{-Pei\tilde{r}_{f}} - e^{-Pe}} = Pe \frac{T_{f} - T_{d}}{e^{Pe(1-i/\tilde{r}_{f})} - 1}; \\ & \frac{dT}{dr} \bigg|_{\tilde{r}=1} = Pe \frac{\left(T_{f} - T_{d}\right)e^{-Pei}}{e^{-Pei\tilde{r}_{f}} - e^{-Pei}}; \\ & \text{BCs: } \tilde{r} \to \infty, T = T_{x} \text{ and } \tilde{r} = \tilde{r}_{f}, T = T_{f} \\ & \Rightarrow T(\tilde{r}) = \frac{\left(T_{f} - T_{d}\right)e^{-Pei}}{e^{-Pei\tilde{r}_{f}} - e^{-Pei}}; \\ & \text{BCs: } \tilde{r} \to \infty, T = T_{x} \text{ and } \tilde{r} = \tilde{r}_{f}, T = T_{f} \\ & \Rightarrow T(\tilde{r}) = \frac{\left(T_{f} - T_{x}e^{-Pei\tilde{r}_{f}}\right) - \left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}}; \\ & \frac{dT}{d\tilde{r}} = -\frac{Pe}{\tilde{r}_{2}^{2}} \frac{\left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}} \\ & \frac{dT}{d\tilde{r}} \bigg|_{\tilde{r}=\tilde{r}_{f}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{\left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{e^{T_{f}} - T_{x}}}{1 - e^{-Pei\tilde{r}_{f}}} \\ & \frac{dT}{d\tilde{r}} \bigg|_{\tilde{r}=\tilde{r}_{f}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{\left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{e^{T_{f}} - T_{x}}}{1 - e^{-Pei\tilde{r}_{f}}}} \\ & \frac{dT}{d\tilde{r}} \bigg|_{\tilde{r}=\tilde{r}_{f}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{\left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}}} \\ & \frac{dT}{d\tilde{r}} \bigg|_{\tilde{r}=\tilde{r}_{f}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{\left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}}} \\ & \frac{dT}{d\tilde{r}} \bigg|_{\tilde{r}=\tilde{r}_{f}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{\left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}}} \\ & \frac{dT}{d\tilde{r}} \bigg|_{\tilde{r}=\tilde{r}_{f}} = -\frac{Pe}{\tilde{r}_{f}^{2}} \frac{\left(T_{f} - T_{x}\right)e^{-Pei\tilde{r}_{f}}}{1 - e^{-Pei\tilde{r}_{f}}}} \\ & \frac{dT}{d\tilde{r}} \bigg|_{\tilde{r}=\tilde{r}_{f}} \\ & \frac{dT}{$$

Droplet combustion

USC Viterbi

▶ 4 equations for 4 unknowns; note $Y_{f,d}/S$ will be isolated because neither $Y_{f,d}$ nor S are known but $Y_{F,d}/S = (v_F M_F Y_{ax,∞})/(v_{ax} M_{ax})$ (stoichiometric mass ratio of air to <u>pure</u> fuel) contains only known properties

$$\begin{array}{l} \text{Eq. 1: } e^{PeLe_{F}(1/\bar{r}_{f}-1)} + Se^{PeLe_{m}/\bar{r}_{f}} = 1 + S; \ \text{Eq. 2: } \frac{Y_{F,d}Q_{R}/C_{P}}{1 - e^{-PeLe_{F}(1-1/\bar{r}_{f})}} = \frac{\left(T_{f} - T_{d}\right)}{1 - e^{-Pe(L_{T}(1-1/\bar{r}_{f})}} + \frac{\left(T_{f} - T_{x}\right)}{e^{Pe(\bar{r}_{f}} - 1} \\ \text{Eq. 3: } e^{Pe\left(1-1/\bar{r}_{f}\right)} = 1 + \frac{C_{P}\left(T_{f} - T_{d}\right)}{L_{v}}; \ \text{Eq. 4: } Y_{F,d} = 1 - e^{-PeLe_{F}(1-1/\bar{r}_{f})} \\ \text{Eq. 1} \Rightarrow Y_{F,d} = \left(\frac{Y_{F,d}}{S}\right) \frac{1 - e^{PeLe_{F}(1/\bar{r}_{f}-1)}}{e^{PeLe_{K}(1/\bar{r}_{f}-1)}} \text{ or } \frac{Y_{F,d}}{1 - e^{PeLe_{F}(1/\bar{r}_{f}-1)}} = \left(\frac{Y_{F,d}}{S}\right) \frac{1}{e^{PeLe_{m}/\bar{r}_{f}} - 1} \quad \text{(Eq. A)} \\ \text{Eq. A + Eq. 4 \Rightarrow \left(\frac{Y_{F,d}}{S}\right) \frac{1 - e^{PeLe_{F}(1/\bar{r}_{f}-1)}}{e^{PeLe_{m}(1/\bar{r}_{f}-1)}} = 1 - e^{-PeLe_{F}(1-1/\bar{r}_{f})} \Rightarrow e^{Pe/\bar{r}_{f}} = \left(1 + \left(Y_{F,d}/S\right)\right)^{1/Le_{m}} \quad \text{(Eq. B)} \\ \text{Eq. B + Eq. 2 + Eq. 3 + Eq. 4 \Rightarrow \frac{Q_{R}}{C_{P}} = \frac{\left(T_{f} - T_{d}\right)}{1 - \frac{L_{v}}{C_{P}\left(T_{f} - T_{d}\right) + L_{v}}} + \frac{\left(T_{f} - T_{z}\right)}{\left(1 + \left(Y_{F,d}/S\right)\right)^{1/Le_{m}} - 1} \\ \Rightarrow \frac{Q_{R}}{C_{P}} = \left(T_{f} - T_{d}\right) + \frac{L_{v}}{C_{P}} + \frac{\left(T_{f} - T_{z}\right)}{\left(1 + \left(Y_{F,d}/S\right)\right)^{1/Le_{m}} - 1} \Rightarrow T_{f} = \frac{\left(\frac{Q_{R} - L_{v}}{C_{P}} + T_{d}\right) \left(\left(1 + \left(Y_{F,d}/S\right)\right)^{1/Le_{m}} - 1\right) + T_{z}}{\left(1 + \left(Y_{F,d}/S\right)\right)^{1/Le_{m}}} \quad \text{(Eq. C)} \\ \\ \text{AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames}$$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Droplet combustion} \\ \end{array} \\ \text{Eq. 3 \Rightarrow } e^{P_{e}} = \frac{C_{p}(T_{f} - T_{d}) + L_{v}}{L_{v}} e^{P_{elf_{f}}} \\ & \\ \end{array} \\ \begin{array}{l} C_{p} \left(\frac{\left(\underbrace{Q_{R} - L_{v}}{C_{p}} + T_{d} \right) \left(\left(1 + \left(Y_{F,d} / S \right) \right)^{ULe_{as}} - 1 \right) + T_{x}}{\left(1 + \left(Y_{F,d} / S \right) \right)^{ULe_{as}}} - T_{d} \right) + L_{v} \\ + \text{Eq. B + Eq. C \Rightarrow } e^{P_{e}} = \frac{C_{P} \left(\left(1 + \left(Y_{F,d} / S \right) \right)^{ULe_{as}} - 1 \right) + C_{P} \left(T_{x} - T_{d} \right)}{L_{v}} \\ \end{array} \\ \Rightarrow \overline{Pe} = \ln(1 + B); B = \frac{Q_{R} \left(\left(1 + \left(Y_{F,d} / S \right) \right)^{ULe_{as}} - 1 \right) + C_{P} \left(T_{x} - T_{d} \right)}{L_{v}} \\ \text{Note for } Le_{ox} = 1, B = \frac{Q_{R} \left(Y_{F,d} / S \right) + C_{P} \left(T_{x} - T_{d} \right)}{L_{v}}, T_{f} = \frac{\left(\underbrace{Q_{R} - L_{v}}{C_{p}} + T_{d} \right) \left(Y_{F,d} / S \right) + T_{x}}{1 + \left(Y_{F,d} / S \right)} \\ \text{and for } \left(Y_{F,d} / S \right) <<1, B \approx \frac{Q_{R} \left(Y_{F,d} / S \right) / Le_{ox} + C_{P} \left(T_{x} - T_{d} \right)}{L_{v}}, T_{f} = \frac{\left(\underbrace{Q_{R} - L_{v}}{C_{p}} + T_{d} \right) \left(\left(Y_{F,d} / S \right) + T_{x}}{1 + \left(Y_{F,d} / S \right) / Le_{ox}} + T_{x}} \\ \end{array} \\ \begin{array}{l} \text{AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames} \end{array}$$

Droplet combustion - comments USC Vite	rbi Engineering
(8k/pdCP)In(1+B) is called the burning rate constant – units length ² /time	
k/ρ _d C _P is NOT the thermal diffusivity because ρ _d is the droplet (liquid) density, not gas density!	
➢ B is called the Transfer Number – ratio of enthalpy generated by combustion to enthalpy need to vaporize fuel; typical values for hydrocarbons ≈ 10, much lower for methanol (≈ 3)	
Enthalpy release (Q _R) appears only inside a ln(), thus changing T _f hardly affects burning rate at all - why? The more rapidly fuel is vaporized, the more rapidly the fuel vapor blows out, thus the harder it is for heat to be conducted back to the fuel surface	
 In fact since you can't change k, ρ_d or C_P significantly in fuel/air combustion, only the droplet diameter affects burning time significantly (time ~ d_d(0)²) 	
> d_f/d_d is constant and doesn't even depend on transport properties (except for Le ₀₂), just thermodynamic properties!	
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames	58

USC Viterbi Droplet combustion - comments School of Engineering For decreasing Le_{ox} B (thus Pe) increases, but not much because of ln(1+B) term rf decreases because of Le_{ox} term; increasing B inside In() term has less effect > T_f increases because of (1/Leox) exponent > Actually there is a 5th equation since T_d and Y_{Ed} are not dependent – a liquid-vapor equilibrium exists, typically modeled via the Clausius-Clapeyron relation $X_{F,d} = \exp\left|\frac{L_{V}}{\Re}\left(\frac{1}{T_{b}} - \frac{1}{T_{d}}\right)\right|; T_{b} = \text{boiling point of pure liquid at ambient pressure}$ $X_{F,d}$ = mole fraction of fuel at droplet surface = $Y_{F,d} \frac{M_F / M_{inert}}{1 + Y_{F,d} (M_F / M_{inert} - 1)}$... but for typical fuel-air combustion, effect on burning rate constant K is small because $Y_{F,d}$ is close to 1 (but must be < 1). AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames

Droplet combustion USC Viter)i neering
The d ² -law assumes no buoyant or forced convection, but in most applications there is likely to be significant flow; one relation for the effect of flow on burning rate is	
$\left[d(0)\right]^{2} - \left[d(t)\right]^{2} = Kt; K = \frac{4 Nu k}{\rho_{l} C_{P}} \ln(1+B); Nu = 2 + \frac{0.555 \text{Re}_{d}^{1/2} \text{Pr}^{1/3}}{\left[1 + 1.232 / \left(\text{Re}_{d} \text{Pr}^{4/3}\right)\right]^{1}}$	/2
Re _d = Droplet Reynolds number = ud(t)/v Nu = Nusselt number based on droplet diameter u = droplet velocity relative to gas Pr = Prandtl number = v/ α v = kinematic viscosity α = thermal diffusivity = k/ ρ C _p	
Reduces to the previous result for a – 0 (thus Re – 0)	
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed flames	54

References	USC Viterbi School of Engineering
 R. Chen, R.L. Axelbaum, "Scalar dissipation rate at extinction and the enriched combustion," Combustion and Flame, Volume 142, 2005, Pa https://doi.org/10.1016/j.combustflame.2005.02.008 Anthony J. Marchese, Frederick L. Dryer, Vedha Nayagam, "Numerica isolated n-alkane droplet flames: initial comparisons with ground and s microgravity experiments," Combustion and Flame, Volume 116, 1999 https://doi.org/10.1016/S0010-2180(98)00109-6 	effects of oxygen- ges 62-71, al modeling of space-based , Pages 432-459,
AME 513b - Spring 2020 - Lecture 3 - Nonpremixed	l flames 66