

Outline USC Viter	D i gincering
 Chemical thermodynamics Kinetic theory of gases as applied to chemical reactions Types of reactions in combustion processes Experimental methods Analytical solutions for 1-step reactions Irreversible Reversible Reversible Approximations for multi-step reactions Steady-state approximation Pressure effects – Lindemann mechanism Partial equilibrium approximation Chain branching Combining 1-step reaction with thermodynamics (but not transport) Homogeneous reaction Well-stirred reactor "Real" chemistry 	
 Near orientisity Online chemical kinetics calculator H₂ - O₂ reaction CO-O₂ Hydrocarbons 	
AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics	2

AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

Viterbi Chemical kinetics - Law of Mass Action Thermodynamics tells us end state but not RATE of reactions For a chemical reaction of the form $v_AA + v_BB \rightarrow v_CC + v_DD$ e.g. 1 H₂+1 I₂ \rightarrow 2 HI A = H₂, v_A = 1, B = I₂, v_B = 1, C = HI, v_C = 2, D = nothing, v_D = 0 the Law of Mass Action (LoMA) states that the rate of reaction $\frac{d}{dt} \left\{ \frac{[A]}{v_A} \right\} = \frac{d}{dt} \left\{ \frac{[B]}{v_B} \right\} = -\frac{d}{dt} \left\{ \frac{[C]}{v_C} \right\} = -\frac{d}{dt} \left\{ \frac{[D]}{v_D} \right\} = -k_f [A]^{v_A} [B]^{v_B}$ [i] = concentration of molecule i (usually moles per liter) k_f = "forward" reaction rate constant Define "order of reaction" = Σv_i for reactants - # of molecules that must collide for reaction to occur How to calculate [A]? > Ideal gas law, the total moles of gas per unit volume = $P/\Re T$ Then [A] = (Total moles / volume)*(moles i / total moles), thus $[A] = (P/\Re T)X_A$ (X_A = mole fraction of A) Minus sign on d[A]/dt and d[B]/dt since A & B are being depleted LoMA states that the rate of reaction is proportional to rate of collisions between reactant molecules, which is proportional to concentration of each reactant AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

Types of reactions (1/2)USC Viterbi School of Engineering
 > Global reaction > Example: CH₄ + 2O₂ → CO₂ + 2 H₂O > NOT an actual reaction that occurs > No relation between order of reaction (3 in this example) and actual pressure effect on reaction rate > Chain initiation > Example: H₂ + M → H + H + M > Break stable molecule into radical(s) > High E_a - endothermic, must break strong bond > High Z (i.e. not very orientation sensitive) > Not needed in flames, where radical source (products) exists > Chain branching > Example: H + O₂ → OH + O > Use a radical to create more radicals > High E_a - endothermic, must break strong bond, but also make a bond, so not as high as chain initiation
 Moderate Z (somewhat orientation sensitive) AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

1-step reversible reaction (1/4)
Subset of Engineering
Now consider 1 single (but reversible) reaction:

$$A + B \rightarrow C + D \quad \text{(forward reaction, rate constant } k_f)$$

$$C + D \rightarrow A + B \quad \text{(reverse reaction, rate constant } k_b)$$

$$\frac{d[A]}{dt} = -k_f[A][B] + k_b[C][D]$$

$$[A]_o - [A] = [B]_o - [B] = [C] - [C]_o = [D] - [D]_o$$

$$\Rightarrow [B] = [B]_o - [A]_o + [A]; [C] = [C]_o + [A]_o - [A]; [D] = [D]_o + [A]_o - [A]$$

$$\Rightarrow \frac{d[A]}{dt} = -k_f[A][B]_o - [A]_o + [A]] + k_b \{[C]_o + [A]_o - [A]\} \{[D]_o + [A]_o - [A]\}$$

$$\Rightarrow \frac{1}{(k_b - k_f)} \frac{d[A]}{dt} = [A]^2 + a[A] + b \Rightarrow (k_b - k_f) dt = \frac{d[A]}{[A]^2 - a[A] + b} \text{ where}$$

$$a = \frac{k_f([B]_o - [A]_o) + k_b(2[A]_o + [C]_o + [D]_o)}{(k_b - k_f)}; b = \frac{k_b([A]_o + [C]_o)([A]_o + [D]_o)}{(k_b - k_f)}$$

$$\Rightarrow (k_b - k_f)t = -\frac{1}{\sqrt{a^2 + 4b}} \ln\left(\frac{\sqrt{a^2 + 4b} + a + 2[A]}{\sqrt{a^2 + 4b} - a - 2[A]}\right) + \text{Constant}$$
AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

1-step reversible reaction (2/4)
Solution:
$$t = 0$$
, $[A] = [A]_o$
 $t = 0$, $[A] = [A]_o \Rightarrow (k_b - k_f)(0) = -\frac{1}{\sqrt{a^2 + 4b}} \ln\left(\frac{\sqrt{a^2 + 4b} + a + 2[A]_o}{\sqrt{a^2 + 4b} - a - 2[A]_o}\right) + \text{Constant}$
 $\Rightarrow \text{Constant} = \frac{1}{\sqrt{a^2 + 4b}} \ln\left(\frac{\sqrt{a^2 + 4b} + a + 2[A]_o}{\sqrt{a^2 + 4b} - a - 2[A]_o}\right)$
 $\Rightarrow \left((k_b - k_f)t = \frac{1}{\sqrt{a^2 + 4b}} \ln\left(\frac{\sqrt{a^2 + 4b} + a + 2[A]_o}{\sqrt{a^2 + 4b} - a - 2[A]_o}\right)$
 $\Rightarrow \ln \text{ general the algebra to "simplify" is horrendous but consider special case $[A]_o = [B]_o, [C]_o = [D]_o = 0$
 $[A]_o = [B]_o, [C]_o = [D]_o = 0 \Rightarrow a = -\frac{2k_b[A]_o}{k_b - k_f}; b = -\frac{k_b[A]_o^2}{k_b - k_f}; \sqrt{a^2 + 4b} = \frac{2\sqrt{k_bk_f}[A]_o}{k_b - k_f}$
 $\Rightarrow \frac{\sqrt{a^2 + 4b} + a + 2[A]_o}{\sqrt{a^2 + 4b} - a - 2[A]_o} = \frac{1 - \sqrt{k_f/k_b}}{1 + \sqrt{k_f/k_b}}$
AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics$

Validity of ste	ady-	stat	te a	app	roxi	mat	tion	J	USC Viterbi School of Engineering
 Radical (A, B) of species (A₂, B₂, Radical pool bud decreases slow Product AB follow that steady-stat reactant concer How do change AB formed)? For the steady of the stea	concent AB) ilds qu ly as re ows mi ce exist ntration es in inp or 10%	ickly eacta rror- s, ra s sh out p inci	ons to p ants ima dica ift oara reas	are r beak are ge of al cor mete se in	nuch , reac consi f reac ncenti ers aff parar	lowe ches umec tants ratior fect r meter	r tha stead s A ₂ & ns sh eacti r (in d	n ma dy-st & B ₂ , iift qu on ti case	ajor (stable) rate, then showing uickly as me (90% of of [A], [B],
[AB], added 0.1	to initi	al m	ixtu	re), '	% cha	ange	in re	actio	on time:
Property	k 1 k 2	k ₃	k 4	[M]	[A ₂]	[B ₂]	[A]	[B]]
% change	-6 -4	-2	2	-4	36	-11	-17	-8	1
k_1 , k_2 , k_3 increases overall reaction rate, k_4 decreases rate due to loss of radicals; adding [A] decreases rate more than adding [B] due to bottleneck of initiation $A_2 + M \rightarrow 2A + M$									
AME 513	3b - Spri	ng 20	020 ·	- Lect	ure 2 ·	- Che	mical	Kine	tics ³²

"Real" chemistry: H ₂ -O ₂ system (4/6) USC Viterbi
 What causes 2 other limits??? Rules: H, OH, O more reactive than HO₂ When radicals hit wall, they may adsorb and be converted to stable species
 Radical concentrations small, thus radical-radical reactions unlikely (but maybe HO₂ + HO₂ homework problem!) Reaction rates vary with pressure (P) Collisions (of any molecule) with wall ~ P¹ (P = pressure) Bimolecular reactions (e.g. H + O₂ → OH + O) ~ P² Trimologular reactions (e.g. H + O₂ + M → HO₂ + M → R³
 First limit
 > H + O₂ → OH + O dominates H + O₂ + M → HO₂ + M > As P↑, molecule-wall collisions increase more slowly than molecule-molecule collisions, thus probability of radicals reaching wall and being converted to stable species decreases – chain branching can occur - explosion > As T↑, branching rates (e.g. H + O₂ → OH + O) increase (high E_a)
thus impact of loss at walls decreases – explosion
AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

r_3Br Halon-1301 215 2.9 432.10 13 $CF_3CH_2CF_3$ HFC-236fa 272 5.6 851.20 0 CF_4H HFC-23 188 12.6 882.00 0	2 44
CF ₃ CH ₂ CF ₃ HFC-236fa 272 5.6 851.20 0 CF ₃ H HFC-23 188 12.6 882.00 0	2.44
CE ₂ H HEC-23 188 12.6 882.00 0	4.89
110 12.0 002.00 0	5.48
CF ₃ CHClF HCFC-124 262 6.7 994.95 0.03	5.79
CF ₂ HCl HCFC-22 230 11.6 1003.40 0.055	6.16
CF ₃ CFH ₂ HFC-134a 247 10.5 1071.00 0	6.49
CF ₃ CFHCF ₃ HFC-227ea 293 6.3 1071.00 0	6.20
C ₂ F ₆ FC-116 195 7.8 1076.40 0	6.33
CF ₃ CHF ₂ HFC-125 225 9.4 1128.00 0	6.76
C ₃ F ₈ FC-218 235 6.1 1146.80 0	6.63
C ₄ F ₁₀ FC-31-10 275 5 1190.00 0	6.80
CF ₄ FC-14 145 13.8 1214.40 0	7.64
CF ₃ CHCl ₂ HCFC-123 300 7.5 1237.50 0.02	7.26

Viterbi Homogeneous reaction (2/5) Energy equation (constant volume) - if all fuel consumed $C_V(T_{ad} - T_{\infty}) = fQ_R = [Y_f(t=0) - Y_f(t=\infty)]Q_R$ (Y_f = fuel mass fraction) So at any instant in time $C_V(T(t) - T_{\infty}) = \left[Y_f(0) - Y_f(t)\right]Q_R$ where $Y_f(t)$ is the instantaneous fuel mass fraction (at t = 0, no fuel consumed, T = initial temperature = T_{∞} ; at t = ∞ , Y_f = 0, all fuel consumed, $T = T_{ad}$); then $Y_{f}(t=0) = f = \frac{[fuel]_{\infty}M_{fuel}}{\rho_{\infty}} \Rightarrow Y_{f}(t) = \frac{[fuel](t)M_{fuel}}{\rho_{\infty}}$ $\Rightarrow C_V(T(t) - T_{\infty}) = \frac{Q_R M_{fuel} \{ [fuel]_{\infty} - [fuel](t) \}}{\rho} \quad (\text{Eq. 1})$ (this simply says that there is a linear relationship between the amount of fuel consumed and the temperature rise) (If constant pressure $C_V \rightarrow C_P$) > Since we assumed $v_A = v_B = 1$, where A = fuel, B = oxygen $\frac{d[A]}{dt} = \frac{d[fuel]}{dt} = \frac{d[B]}{dt} = \frac{d[Ox]}{dt} \Longrightarrow [Ox]_{\infty} - [Ox](t) = [fuel]_{\infty} - [fuel](t) \quad (Eq. 2)$ AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

Well-stirred reactor (3/5)
Finally combining Eqs. 1, 2, 3:

$$\dot{m} = \frac{M_A V_R Z}{Y_{A,\infty}} \frac{T_{ad} - T_{\infty}}{T_R - T_{\infty}} [A]_R [B]_R \exp\left(\frac{-E}{\Re T_R}\right)$$

$$\dot{m} = \frac{M_A V_R Z}{Y_{A,\infty}} \frac{T_{ad} - T_{\infty}}{T_R - T_{\infty}} \frac{\rho_R Y_{A,\infty}}{M_A} \frac{T_{ad} - T_R}{T_{ad} - T_{\infty}} \frac{\rho_R V Y_{A,\infty}}{M_B} \left[\frac{1}{\phi} - \frac{T_R - T_{\infty}}{T_{ad} - T_{\infty}}\right] \exp\left(\frac{-E}{\Re T_R}\right)$$

$$\dot{m} = \frac{\rho_R^2 V_R V Y_{A,\infty} Z}{M_B} \frac{T_{ad} - T_R}{T_R - T_{\infty}} \left[\frac{1}{\phi} - \frac{T_R - T_{\infty}}{T_{ad} - T_{\infty}}\right] \exp\left(\frac{-E}{\Re T_R}\right)$$

$$\dot{m} = \frac{\rho_R^2 V_R V Y_{A,\infty} Z}{R^2 M_B T_{ad}^2} \frac{T_{ad}^2 - T_R}{T_R^2 - T_{\infty}} \left[\frac{1}{\phi} - \frac{T_R - T_{\infty}}{T_{ad} - T_{\infty}}\right] \exp\left(\frac{-E}{\Re T_R}\right)$$

$$\dot{m} = \frac{\frac{1}{R^2 M_B T_{ad}^2}}{R^2 M_B T_{ad}^2} \frac{T_{ad}^2 T_R^2}{T_R^2 - T_R - T_{\infty}} \left[\frac{1}{\phi} - \frac{T_R - T_{\infty}}{T_{ad} - T_{\infty}}\right] \exp\left(\frac{-E}{\Re T_R}\right)$$

$$\dot{m}_{ref} = \frac{1}{T_R^2} \frac{1 - \overline{T_R}}{T_R - \varepsilon} \left[\frac{1}{\phi} - \frac{\overline{T_R} - \varepsilon}{1 - \varepsilon}\right] \exp\left(\frac{-\beta}{T_R}\right); \quad \dot{m}_{ref} = \frac{P_R^2 V_R V Y_{A,\infty} Z}{R^2 M_B T_{ad}^2}; \quad \overline{T_R} = \frac{T_R}{T_{ad}}; \quad \beta = \frac{E}{\Re T_{ad}}$$
Function for reactor temperature T_R as a function mass flow rate for varying values of the properties: reference mass flow, enthalpy release parameter (ε) and dimensionless activation energy (β)
AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

Well-stirred reactor (5/5) USC Viter	rbi
 Middle branch generally unstable Small increase in mass flow for momentarily fixed T_R (thus reaction rate) will increase reactant leakage, thus decrease T, moving reacting rate still lower, eventually dropping to lower branch Opposite for small decrease in mass flow (jump to upper branch) Upper and lower branches stable – e.g. increase in mass flow decreases T_R and takes you back to same branch Results very sensitive to β As β increases, extinction point rises to higher T, i.e. closer to T_{ad} At realistic values of β, curve spans many decades of mass flow – never looks like textbook plots β = 5 plotted – not realistic, 10 or more for hydrocarbon oxidation Weaker effects of ε and φ Who cares about this? Can use this apparatus to study kinetics and obtain estimates of reaction rate parameters Z and E by measuring mass flow at extinction and/or intermediate & product concentration vs mass flow 	ion
AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics	66

Viterbi Summary (2/2) Real fuels have very complex chemistry, not just 1 or 2 steps Need chain branching for fast reaction Hydrogen oxidation > Initiation – $H_2 + M \rightarrow H + H + M$, $RH + M \rightarrow R + H + M$ Branching » Typically H + $O_2 \rightarrow OH + O$ at high T / low P » Peroxide path (with HOOH or ROOH) at low T / high P where H atoms are lost due to recombination Recombination - H + O_2 + M \rightarrow H O_2 + M Radical termination at walls in explosion vessel \geq CO oxidation Requires CO + OH \rightarrow CO₂ + H Parasitic on H₂ – O₂ mechanism since CO + OH relatively slow Hvdrocarbons Inhibit their own oxidation due to $RH + H \rightarrow R + H_2$ > Decomposition rate depends on C-H bond strength > First fuel decomposes, generates radical pool, generates CO then oxidizes it Much information can be deduced from well-characterized experiments (e.g. constant P, T vessel) Reaction rates + thermodynamics can be used to describe model systems, e.g. (time-dependent) homogeneous reaction or (steady-state) Well-Stirred Reactor AME 513b - Spring 2020 - Lecture 2 - Chemical Kinetics

