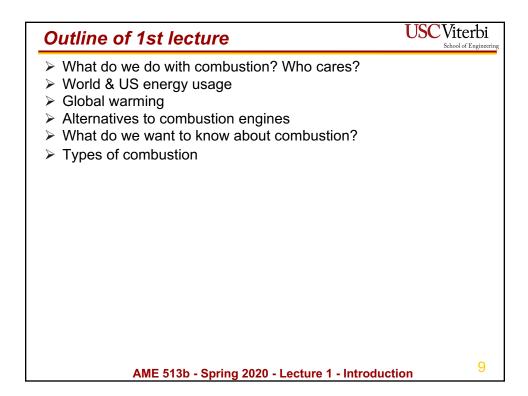


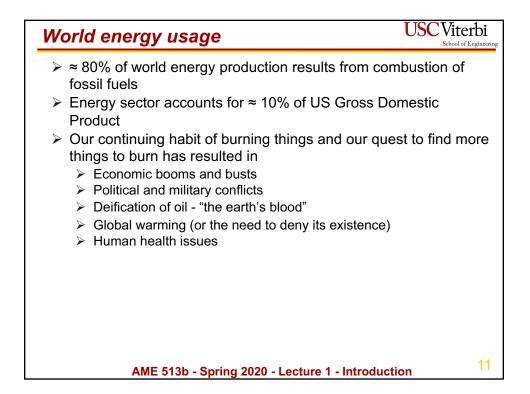
Symbol	Meaning (units)
A	Cross-section area (m ²)
A*	Throat area (m²)
Ae	Exit area (m²)
В	Pre-exponential factor in reaction rate expression (AME 513a) = Z in 513b
	([moles/m ³] ¹⁻ⁿ K ^{-a} /s) (n = order of reaction)
В	Transfer number for droplet burning ()
с	Sound speed (m/s)
С	Duct circumference (m)
CD	Drag coefficient ()
C _f	Friction coefficient ()
со	Carbon monoxide (compound having 1 carbon and 1 oxygen atom)
CP	Heat capacity at constant pressure (J/kgK)
Cv	Heat capacity at constant volume (J/kgK)
D	Mass diffusivity (m ² /s)
D	Drag force (N)
DORF	Degree Of Reaction Freedom
E	Energy contained by a substance = $U + KE + PE (J)$
Ea	Activation Energy (J/mole)
	AME 513b - Spring 2020 - Lecture 1 - Introduction

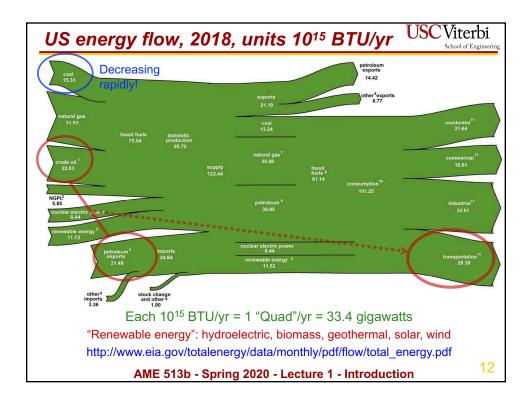

f FAR g g H h h	Fuel mass fraction in mixture () Fuel to air mass ratio () Acceleration of gravity (m/s ²) Gibbs function = h - Ts (J/kg) Enthalpy = U + PV (J) Enthalpy per unit mass = u + Pv (J/kg)
g g H h	Acceleration of gravity (m/s²) Gibbs function = h - Ts (J/kg) Enthalpy = U + PV (J)
g H h	Gibbs function = h - Ts (J/kg) Enthalpy = U + PV (J)
H h	Enthalpy = U + PV (J)
h	1,5 ()
-	Enthalpy per unit mass = u + Pv (J/kg)
h	
~	Heat transfer coefficient (usually W/m ² K, dimensionless in AirCycles.xls files)
h <i>Ã</i> i	Enthalpy of chemical species i per mole = (J/mole)
$[\tilde{h}(T) - \tilde{h}_{298}]_i$	Thermal enthalpy of chemical species i per $h(\partial t) = (\partial t_{gg}) + \Delta h_{f,i}^o$
SP	Specific impulse (sec)
Ki	Equilbrium constant of chemical species i ()
<	Thermal conductivity (W/mK)
< .	Reaction rate constant ([moles/m ³] ¹⁻ⁿ /sec) (n = order of reaction)
Κ	Droplet burning rate constant (m ² /s)
<	Stretch rate (1/s) (in 513a notation; = Σ in 513b)
Ka	Karlovitz number (= 0.157 ReL ^{-1/2} (u'/SL) ² for premixed flames in turbulent flows)
KE	Kinetic energy (J or J/kg)
L	Lift force (N)
L _f	Jet flame length (m)
L	Integral length scale of turbulence (m)
LOMA	Law Of Mass Action

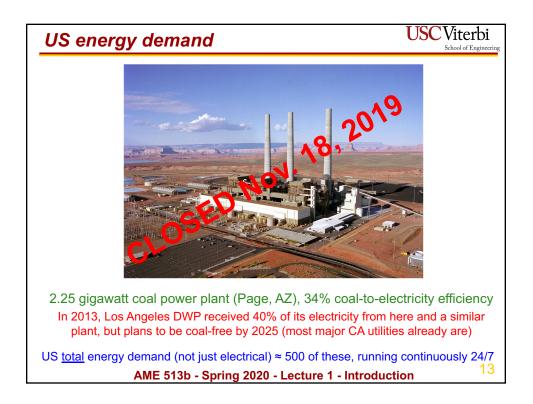
Symbol	Meaning (units)	
Mi	Molecular weight of chemical species i (kg/mole)	
M	Mach number ()	
m	mass (kg)	
<i>ṁ</i>	Mass flow rate (kg/sec)	
\dot{m}_a	Air mass flow rate (kg/s)	
m ^f	Fuel mass flow rate (kg/s)	
n	Order of reaction ()	
n	Exponent on T term in expression for reaction rate constant k	
n _i	Number of moles of chemical species I	
N	Number of chemical species in a mixture	
NO	Nitric oxide (compound having 1 nitrogen atom and 1 oxygen atom)	
NO _x	Oxides of Nitrogen (any compound having nitrogen and oxygen atoms)	
O ₃	Ozone	
Р	Pressure (N/m ²)	
Pa	Ambient pressure (N/m ²)	
Pe	Exit pressure (N/m ²)	
P _{ref}	Reference pressure (101325 N/m ²)	
Pt	Stagnation pressure (N/m ²)	
PE Ø	Potential Energy (J or J/kg)	
Q	Heat transfer (J or J/kg)	
	Heat transfer rate (Watts or Watts/kg)	
Q _R	Fuel heating value (J/kg)	
	AME 513b - Spring 2020 - Lecture 1 - Introduction	4

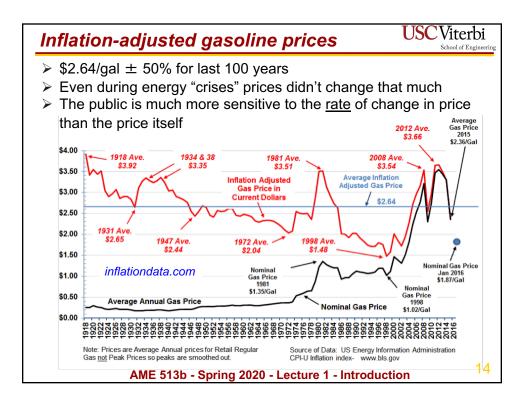
– internal energy vs. velocity) AME 513b) = B in 513a
AME 513b) = B in 513a
Aivie (515b) = b ii 1515a

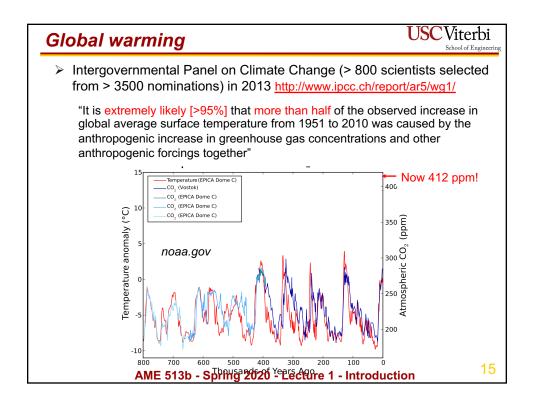
Symbol	Meaning (units)	
]i	Concentration of species i (moles/m ³)	
()*	Property at reference state (Mach number = 1 for all cases considered in this course)	
χ	Thermal diffusivity (m ² /s)	
3	Non-dimensional activation energy = $E/\Re T$ ()	
5~	Flame thickness (m)	
$\Delta ilde{h}^o_{f,i}$	Enthalpy of formation of chemical species i at 298K and 1 atm (J/mole)	
$\Delta \tilde{s}_i^o(T)$	Entropy of chemical species i at temperature T and 1 atm (J/mole K)	
þ	Equivalence ratio ()	
/	Gas specific heat ratio $\equiv C_P/C_v$ ()	
1	Efficiency (thermal efficiency unless otherwise noted)	
lb	Burner (combustor) efficiency for gas turbine engines ()	
Jq	Diffuser efficiency for propulsion engines ()	
Je	Expansion efficiency for reciprocating engines ()	
<mark>Ղո</mark>	Nozzle efficiency for propulsion engines ()	
10	Overall efficiency ()	
Ĵp	Propulsive efficiency ()	
Ղth	Thermal efficiency ()	

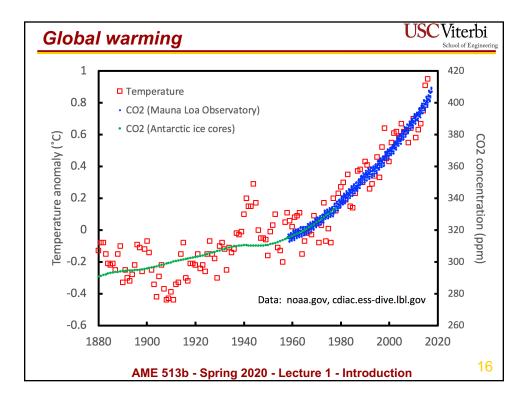

Symbol	Meaning (units)
μ	Dynamic viscosity (kg/m s)
v	Stoichiometric coefficient ()
v	Kinematic viscosity $\equiv \mu/\rho \ (m^2/s)$
πι	Stagnation pressure ratio across component i (i = diffuser (d), burner (b), or nozzle (n))
π _r	= P_{1t}/P_1 ("recovery pressure" ratio) = {1 + [(γ -1)/2]M ² } ^{y/(\gamma-1)} if γ = constant
D	Density (kg/m ³)
Σ	Stretch rate (1/s) (= K in 513a notation)
τ	Torque (N m)
τλ	= T_{4t}/T_1 (ratio of maximum allowable turbine inlet temperature to ambient temperature)
τ _r	= T_{1t}/T_1 ("recovery temperature" ratio) = 1 + [(γ -1)/2]M ² if γ = constant
0	Chemical reaction rate (mole s ⁻¹ m ⁻³)
	AME 513b - Spring 2020 - Lecture 1 - Introduction

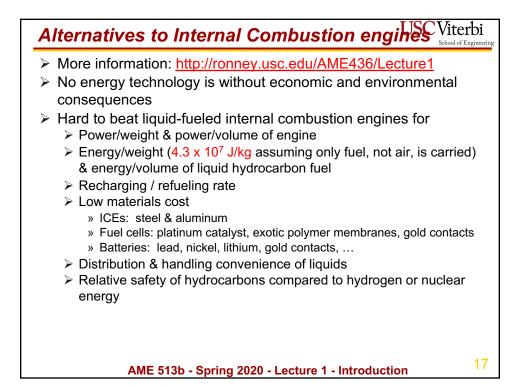


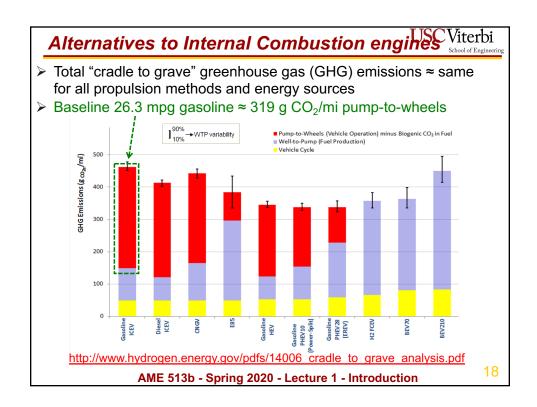

What do we do with combustion?	JSC Viterbi School of Engineering
 Power generation (coal, natural gas) Transportation (land, air, sea vehicles) Weapons (rapid production of high-pressure gas) Heating Lighting Cooking (1/3 of the world's population still uses biom open fires) Hazardous waste & chemical warfare agent destruct Production of new materials, <i>e.g.</i> nano-materials (Future?) Portable power, e.g. battery replacement Unintended / undesired consequences Fires and explosions (residential, urban, wildland, indu Pollutants – NO_x (brown skies, acid rain), CO (poisone Unburned HydroCarbons (UHCs, catalyzes production photochemical smog), formaldehyde, particulates, SO Global warming from CO₂ & other products 	ion ustrial) ous), n of

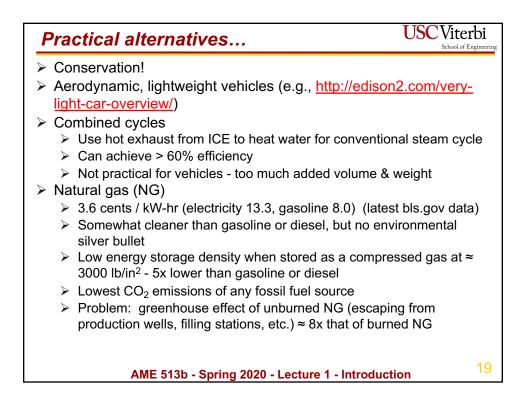

AME 513b - Spring 2020 - Lecture 1 - Introduction

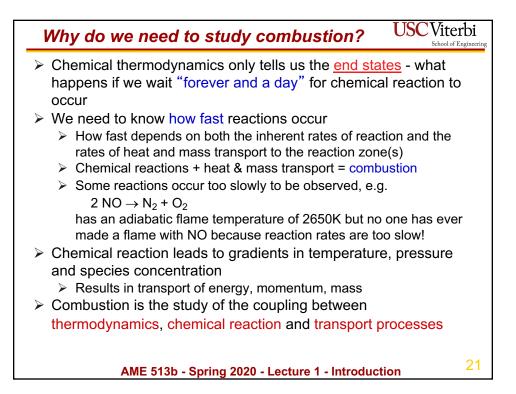

10

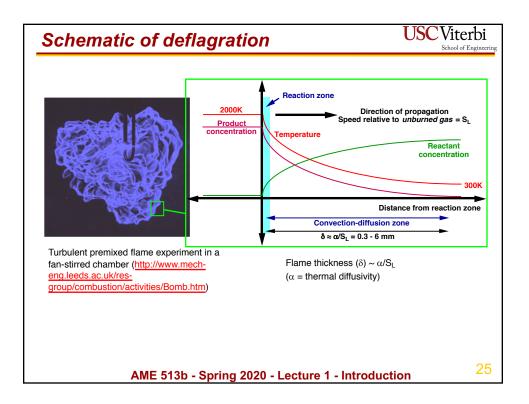


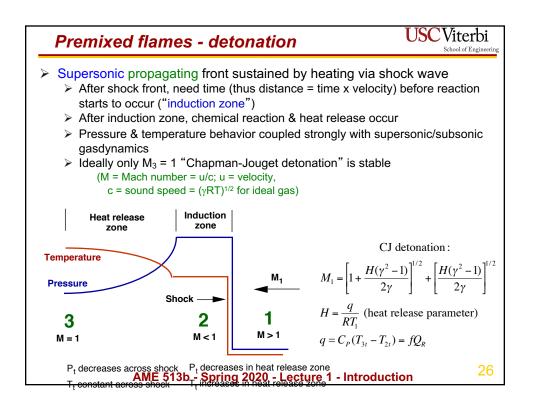


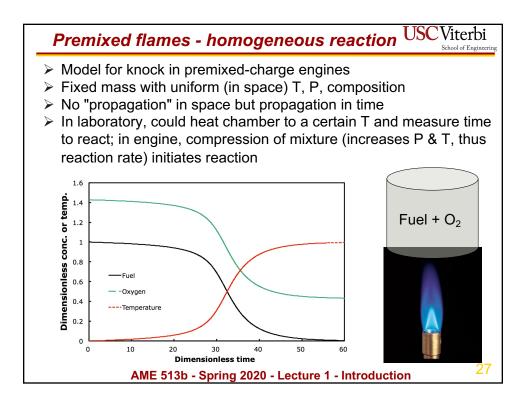


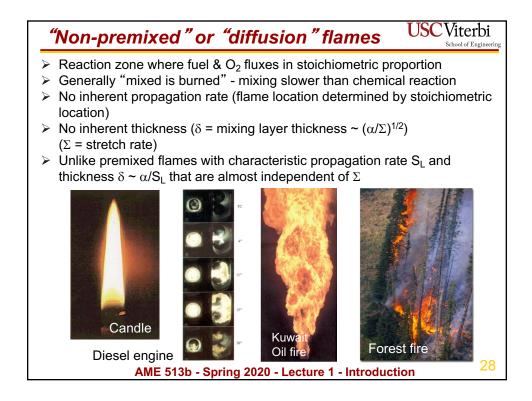


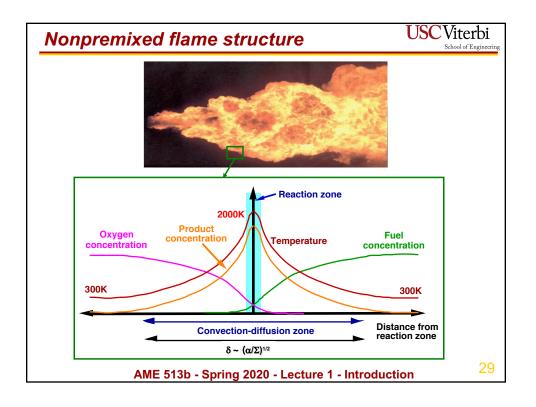



Practical alternatives	USC Viterbi School of Engineering
 Fischer-Tropsch fuels - liquid hydrocarbons from coal Coal or NG + O₂ → CO + H₂ → liquid fuel Competitive with ≈ \$75/barrel oil Cleaner than gasoline or diesel but using coal increases greenhouse gases! Coal : oil : natural gas ≈ 2 : 1.5 : 1 Can use biomass (e.g. agricultural waste) instead of ogas as "energy feedstock" 	
AME 513b - Spring 2020 - Lecture 1 - Introduc	tion 20




What do we want to know about combustion	rbi ^{Engincering}
 From combustion device Power (thermal, electrical, shaft, propulsive) Efficiency (% fuel burned, % fuel converted to shaft, electrical and/or propulsive power) Emissions From combustion process itself Rates of consumption Reactants Intermediates Rates of formation Intermediates Products Global properties Rates of flame propagation Rates of heat generation (more precisely, rate of conversion of chemical enthalpy to thermal enthalpy) Temperatures Pressures 	Ingineering
AME 513b - Spring 2020 - Lecture 1 - Introduction	22


Types of combustionUSC ViterbiSchool of Engineerin				
 Premixed - reactants are intimately mixed on the molecular scale before combustion is initiated; several flavors Deflagration Detonation Homogeneous reaction Nonpremixed - reactants mix only at the time of combustion - have to mix first then burn; several flavors Gas jet (Bic lighter) Liquid fuel droplet Liquid fuel jet (e.g. Kuwait oil fire, candle, Diesel engine) Solid (e.g. coal particle, wood) 				
Туре	Chemical reaction	Heat / mass transport	Momentum transport	Thermo- dynamics
Deflagration			Х	
Detonation	Х	Х		
Homogeneous reaction		Х	Х	
Nonpremixed flames	Х		Х	Х
AME 513b - Spring 2020 - Lecture 1 - Introduction				


Deflagrations USC Viter bi
 Subsonic propagating front sustained by conduction of heat from the hot (burned) gases to the cold (unburned) gases which raises the temperature enough that chemical reaction can occur; since chemical reaction rates are very sensitive to temperature, most of the reaction is concentrated in a thin zone near the high-temperature side May be laminar or turbulent Temperature increases in "convection-diffusion zone" or "preheat zone" ahead of reaction zone, even though no heat release occurs there, due to balance between convection & diffusion Reactant concentration decreases in convection-diffusion zone, even though no chemical reaction occurs there, for the same reason How can we have reaction at the reaction zone even though reactant concentration is low there? (See diagram) Because reaction rate is much more sensitive to temperature than reactant concentration, so benefit of high T outweighs penalty of low concentration
AME 513b - Spring 2020 - Lecture 1 - Introduction

