

Outline USC Vit	of Engineering
 Common cycle types Otto cycle Why use it to model premixed-charge unsteady-flow engines? Air-cycle processes P-V & T-s diagrams Analysis Throttling and turbocharging/supercharging Diesel cycle Why use it to model nonpremixed-charge unsteady-flow engines P-V & T-s diagrams Air-cycle analysis Comparison to Otto Complete expansion cycle Otto vs. Diesel - Ronney's Catechism Fuel-air cycles & comparison to air cycles & "reality" 	?
AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis	2

Common c	ycles f	or IC e	ngines		
No real cycle cycle analys process in the	e behave is we nee ne cycle	s exactly l ed to hold	ike one o one prop	f the ideal erty consta	cycles, but for simp ant during each
Process → ↓ Cycle Name↓	Comp- ression	Heat addition	Expan- sion	Heat rejection	Model for
Otto	S	V	S	v	Premixed-charge unsteady-flow engine
Diesel	S	Р	S	v	Nonpremixed-charge unsteady-flow engine
Brayton	s	Р	s	Р	Steady-flow gas turbine
Complete expansion	S	v	S	Р	"Late intake valve closing" premixed- charge engine
Stirling	v	Т	v	Т	"Stirling" engine
Carnot	s	Т	s	Т	Ideal reversible engine
AME	E 436 - Le	cture 8 - Sp	pring 2019	- Ideal cycl	e analysis 3

Ideal	4-stro	ke Otto c	ycle pro	ocess	USC Viterbi
≻ Com	pression	ratio r = V ₂ /V	′ ₁ = V ₂ /V ₃ =	= V ₅ /V ₄ = V	V ₆ /V ₇
Stroke	Process	Name	Constant	Mass in cylinder	Other info
A	1→2	Intake	Р	Increases	$P_2 = P_1; T_2 = T_1$ At 1, exhaust valve closes, intake valve opens
В	$2 \rightarrow 3$	Compression	s	Constant	$P_3/P_2 = r^{\gamma}$; $T_3/T_2 = r^{(\gamma-1)}$ At 2, intake valve closes
	3→ 4	Combustion	V	Constant	$T_4 = T_3 + fQ_R/C_v;$ $P_4/P_3 = T_4/T_3$ At 3, spark fires
С	$4 \rightarrow 5$	Expansion	s	Constant	$P_4/P_5 = r^{\gamma}; T_4/T_5 = r^{(\gamma-1)}$
	$5 \rightarrow 6$	Blowdown	V	Decreases	P ₆ = P _{ambient} ; T ₆ /T ₅ = (P ₆ /P ₅) ^{(γ-1)/γ} At 5, exhaust valve opens, exhaust gas "blows down"; gas remaining in cylinder experiences ≈ isentropic expansion
D	$6 \rightarrow 7$	Exhaust	Р	Decreases	$P_7 = P_6; T_7 = T_6$
	AME	436 - Lecture	8 - Spring	2019 - Idea	l cycle analysis 5

Otto cycle analysis USC Viterb	i ecering
 η_{th} increases as r increases - why not use r → ∞ (η_{th} → 1)? Main reason: KNOCK (lecture 10) - limits r to ≈ 10 depending on octane number of fuel Also - heat losses increase as r increases (but this matters mostly for higher compression ratios as in Diesels discussed later) Typical premixed-charge engine with r = 8, γ = 1.3, theoretical η_{th} = 0.46; real engine ≈ 0.30 or less - why so different? Heat losses - to cylinder walls, valves, piston Friction Throttling Slow burn - combustion occurs over a finite time, thus a finite change in volume, not all at minimum volume (thus maximum T); as shown later this reduces η_{th} Gas leakage past piston rings ("blow-by") & valves (minor issue) Incomplete combustion (minor issue) 	
AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis	2

Throttling loss USC Viter bi
 Aircycles4recips.xls (to be introduced in next lecture) analysis Defaults: r = 9, V_d = 0.5 liter, P_{intake} = 1 atm, FMEP = 1 atm) Predictions: P_{intake} = 1 atm, 13.45 hp, η = 29.96% 1/3 of max. power via throttling: P_{intake} = 0.445 atm, 4.48 hp, η = 22.42% 1/3 of max. power via halving displacement (double FMEP to account for friction losses in inoperative cylinders) P_{intake} = 0.806 atm, 4.48 hp, η = 24.78% (10.3% improvement over throttling) Smaller engine operating at wide-open throttle to get same power: V_d = 0.5 liter / 3 = 0.167 liter, 4.48 hp, η = 29.96% (33.6% improvement over throttling bigger engine) Moral: if we all drove under-powered cars (small displacement) we'd get much better gas mileage than larger cars with variable displacement – could use turbocharging to regain maximum power (e.g. Ford EcoBoost) Hybrids use the "wide-open throttle, small displacement" idea and store surplus power in battery
AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

	Ideal	Diesel	cycle an	alysis		USC Viterbi School of Enginee
A	Compress New part $\beta = V_4/V_2$ dimension	ssion ratio r ameter: Cu a = (mRT₄/F anal activation	$r = V_1/V_2 = V_2/V_4$ utoff ratio β = V P_4)/(mRT ₃ /P ₃) = on energy β)	V ₃ = V ₅ /V ₃ = N ₄/V ₃ ; since 3 □ T₄/T ₃ (Cuto	V_6/V_7 \rightarrow 4 is cons iff ratio β not	t. P not const. V to be confused with non-
	Stroke	Process	Name	Constant	Mass in cylinder	Other info
	A	1 → 2	Intake	Р	Increases	$P_2 = P_1$; $T_2 = T_1$ At 1, exhaust valve opens, intake valve closes
	В	$2 \rightarrow 3$	Compression	S	Constant	$P_3/P_2 = r^{\gamma}$; $T_3/T_2 = r^{(\gamma-1)}$ At 2, intake valve closes
		3→4	Combustion	Р	Constant	$ \begin{array}{l} T_4 = T_3 + fQ_R/C_P; \\ T_4/T_3 = V_4/V_3 \\ \text{At 3, fuel is injected} \end{array} $
	С	$4 \rightarrow 5$	Expansion	S	Constant	$P_4/P_5 = (r/\beta)^{\gamma}; T_4/T_5 = (r/\beta)^{(\gamma-1)}$
		5 → 6	Blowdown	V	Decreases	$\begin{array}{l} P_6 = P_{ambient}; \\ T_6/T_5 = (P_6/P_5)^{(\gamma-1)/\gamma} \\ At 5, exhaust valve opens, \\ exhaust gas "blows down" as \\ with Otto \end{array}$
	D	$6 \rightarrow 7$	Exhaust	Р	Decreases	$P_7 = P_6; T_7 = T_6$
		AME	436 - Lecture	8 - Spring	2019 - Ide	al cycle analysis 24

Diesel cycle analysis	USC Viterbi School of Engineering
> Thermal efficiency (ideal cycle, no throttling or friction loss)	
$\eta_{th} = \frac{\text{work out + work in}}{\text{heat in}} = \frac{C_v (T_4 - T_5) + P_4 (v_4 - v_3) + C_v (T_2 - T_3)}{C_v (T_2 - T_3)}$	(T_3)
$(T_4 - T_5) + (R/C_r)(T_4 - T_2) - (T_2 - T_2) \gamma - 1 T_4(1 - T_5/T_4)$	$-T_{2}(1-T_{2}/T_{2})$
$= \frac{(4-3)^{-1}}{(C_P/C_v)(T_4-T_3)} = \frac{1}{\gamma} + \frac{4(-3)^{-1}}{\gamma(T_4)}$	$(-T_3)$
$=1-\frac{1}{\gamma}+\frac{T_4(1-(V_5/V_4)^{-(\gamma-1)})-T_3(1-(V_2/V_3)^{-(\gamma-1)})}{\gamma(T_4-T_3)}$	
$=1-\frac{1}{\gamma}+\frac{1}{\gamma}+\frac{T_4(-(V_5/V_4)^{-(\gamma-1)})+T_3((V_2/V_3)^{-(\gamma-1)})}{\gamma(T_4-T_3)}$	
$=1+\frac{-T_4([(V_5/V_3)(V_3/V_4)]^{-(\gamma-1)})+T_3((V_2/V_3)^{-(\gamma-1)})}{\gamma(T_4-T_3)}$	
$=1+\frac{-T_4([r/\beta]^{-(\gamma-1)})+T_3(r^{-(\gamma-1)})}{\gamma(T_4-T_3)}=1+\frac{-\beta T_3([r/\beta]^{-(\gamma-1)})+T_3(r^{-1})}{\gamma(\beta T_3-T_3)}$	^(γ-1))
$=1-\frac{\beta([r/\beta]^{-(\gamma-1)})-(r^{-(\gamma-1)})}{1-\frac{1}{2}}=1-\frac{1}{2}-\frac{\beta^{\gamma}-1}{2}$	
$\gamma(\beta-1)$ $r^{\gamma-1} \gamma(\beta-1)$ AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analy	sis 26

USCViterbi Example School of Engineering For an ideal Diesel cycle with the following parameters: r = 20, $\gamma = 1.3$, M = 0.029kg/mole, f = 0.05, Q_R = 4.45 x 10⁷ J/kg, initial temperature T₂ = 300K, initial pressure $P_2 = 1$ atm, $P_{exh} = 1$ atm, determine: Temperature (T₃) & pressure (P₃) after compression & compression work per kg a) $\frac{P_3}{P_2} = r^{\gamma} \Rightarrow P_3 = P_2 r^{\gamma} = 1atm(20)^{1.3} \Rightarrow P_3 = 49.1atm$ $\frac{T_3}{T} = r^{\gamma - 1} \Longrightarrow T_3 = T_2 r^{\gamma - 1} = 300 K (20)^{1.3 - 1} \Longrightarrow T_3 = 737 K$ $W_{comp} = -C_{v}(T_{3} - T_{2}) = -\frac{R}{\gamma - 1}(T_{3} - T_{2}) = -\frac{\Re}{M}\frac{1}{\gamma - 1}(737 - 300) = -\frac{8.314J / moleK}{0.029kg / mole}\frac{1}{1.3 - 1}(737K - 300K)$ $W_{comp} = -(955.6J / kgK)(737K - 300K) = -417.6kJ / kg \text{ (negative since work is into system)}$ b) Temperature (T_4) and pressure (P_4) after combustion, and the work output during combustion per kg of mixture $T_4 = T_3 + \frac{fQ_R}{C_p}; C_p = \frac{\gamma}{\gamma - 1}R = \frac{1.3}{1.3 - 1} \frac{8.314J / moleK}{0.029kg / mole} = \frac{1242J}{kgK} \Rightarrow T_4 = 737K + \frac{(0.05)(4.45 \times 10^7 J / kg)}{1242J / kgK} = 2528K$ $P_4 = P_3 = 49.1atm \Rightarrow W_{comb} = P(v_4 - v_3) = Pv_3 \left(\frac{v_4}{v_3} - 1\right) = RT_3 \left(\frac{T_4}{T_3} - 1\right) = R\left(T_4 - T_3\right) = \frac{\Re}{M}\left(T_4 - T_3\right)$ $W_{comb} = \frac{8.314J / moleK}{0.029kg / mole} (2528K - 737K) = +513.5kJ / kg$ AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

Example (continued)	USC Viterbi School of Engineering
c) Cutoff Ratio	
$\beta = \frac{V_4}{V_3} = \frac{V_4}{m} \frac{m}{V_3} = \left(\frac{RT_3}{P_3} \frac{P_4}{RT_4}\right)^{-1} = \frac{T_4}{T_3} = \frac{2528K}{737K} = 3.43$	
d) Temperature (Γ_5) and pressure (P_5) after expansion, and the expansion	work per kg of
$\frac{P_4}{P_5} = \left(\frac{r}{\beta}\right)^{\gamma} = \left(\frac{20}{3.43}\right)^{1.3} = 9.89 \Rightarrow P_5 = \frac{P_4}{9.89} = \frac{49.1atm}{9.89} = 4.96atm$	
$\frac{T_4}{T_5} = \left(\frac{r}{\beta}\right)^{\gamma-1} = \left(5.83\right)^{1.3-1} = 1.7 \Rightarrow T_5 = \frac{T_4}{1.7} = \frac{2528K}{1.7} = 1489K$	
$W_{\text{exp}} = -C_V (T_5 - T_4) = -955.63 J / kg K (1489 K - 2528 K) = 992.9 k J / kg$	
e) Net work per kg of mixture	
Net work = Compression work + Work during combustion + E = -417.6 + 992.9 + 513.5 = 1089 kJ/kg	xpansion work
AME 436 - Lecture 8 - Spring 2019 - Ideal cycle an	alvsis 36

Complete Expansion cycle

Highest efficiency cycle consistent with piston/cylinder engine has constant-V combustion but expansion back to ambient P – Complete Expansion or Humphrey cycle (caution: different sources have different cycle naming conventions – Atkinson, Humphrey, Miller etc. – wikipedia.com is becoming the new default standard!)

USCViterbi

School of Engineering

Needs different compression & expansion ratios - can be done by closing the intake valve AFTER the "compression" starts or by extracting power in a turbine whose work is somehow connected to the main shaft power output

Idea	al 4-str	oke Con	nplete e	expans	ion cycle USC Viterbi School of Engineering
≻ Co	mpressio	on ratio r _c = '	V ₂ /V ₃ ; Ex	pansion ra	atio $r_e = V_5/V_4$
Stroke	Process	Name	Constant	Mass in cylinder	Other info
A	1 → 2	Intake	Р	Increases then decreases	$\begin{array}{l} P_2 = P_1; T_2 = T_1 \\ At 1, exhaust valve closes, intake \\ valve opens; volume increases \\ from V_1 (minimum) to V_5 \\ (maximum) then back to V_2 \end{array}$
В	$2 \rightarrow 3$	Compression	s	Constant	$P_3/P_2 = r_{c^{\gamma}}; T_3/T_2 = r_{c^{(\gamma-1)}}$ At 2, intake valve closes
	3→4	Combustion	V	Constant	$\begin{array}{l} T_4 = T_3 + fQ_R/C_v; \\ P_4/P_3 = T_4/T_3 \\ \text{At 3, spark fires} \end{array}$
С	4 → 5	Expansion	S	Constant	
	$5 \rightarrow 6$	"Blowdown"	Every- thing	Constant	No blowdown in complete expansion cycle, nothing happens
D	6 → 7	Exhaust	Р	Decreases	$P_7 = P_6 = P_{ambient};$ $T_7 = T_6; V_7 = V_1$ At 6, exhaust valve opens
	AN	/IE 436 - Lect	ure 8 - Sp	ring 2019 -	Ideal cycle analysis 42

Complete Expansion cycle analysis
Use tropic compression:
$$V_3 = V_2 / r_c$$
; $T_3 = T_2 r_c^{r_c^{-1}}; P_3 = P_2 r_c^{\nu}$
Constant volume combustion: $V_4 = V_3$
 $T_4 = T_3 + \frac{fQ_R}{C_V} = T_2 r_c^{r_1^{-1}} + \frac{fQ_R}{C_V} = T_2 r_c^{\nu(1)} (1 + \Gamma); \Gamma = \frac{fQ_R}{C_V T_2 r_c^{\nu(1)}}$ (dimensionless heat input)
 $\left\{ \text{Recall from Diesel cycle analysis: } \beta = 1 + \frac{fQ_R}{C_p T_2 r_c^{\nu(1)}}, \text{ so } \Gamma = \gamma(\beta - 1) \right\}$
 $P_4 = P_3 \left(\frac{T_4}{T_3} \right) = P_2 r_c^{\nu} \left(\frac{T_2 r_c^{\nu(1)} (1 + \Gamma)}{T_2 r_c^{\nu(1)}} \right) = P_2 r_c^{\nu} (1 + \Gamma)$
Isentropic expansion: $P_5 = P_2$, expansion ratio $r_e = V_5 / V_4 > r_c$
 $P_4 = P_5 r_e^{\nu} \Rightarrow r_e = \left(\frac{P_4}{P_5} \right)^{\frac{1}{\nu}} = \left(\frac{P_2 r_c^{\nu} (1 + \Gamma)}{P_2} \right)^{\frac{1}{\nu}} = r_c (1 + \Gamma)^{\frac{1}{\nu}} \text{ or } \frac{r_e}{r_c} = (1 + \Gamma)^{\frac{1}{\nu}}$
 $T_4 = T_5 r_e^{\nu(1)} \Rightarrow T_5 = \frac{T_4}{r_e^{\nu(1)}} = \frac{T_2 r_c^{\nu(1)} (1 + \Gamma)}{\left[r_c (1 + \Gamma)^{\frac{1}{\nu}} \right]^{\frac{1}{\nu}}} = T_2 (1 + \Gamma)^{\frac{1}{\nu}}$
AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

USC Viterbi **Complete Expansion cycle** School of Engineering > Thermodynamically, ideal Complete Expansion cycle is same as turbocharged cycle if you take turbine work as net work output rather than driving an air pump Gain due to complete expansion is substantial > Low-r cycle ideal shown on page 41: η_{th} = 0.424 vs. 0.356 > Realistic cycle parameters (next lecture): $\eta_{th} = 0.366$ vs. 0.295 No muffler needed if exhaust always leaves cylinder at 1 atm! > Late intake value closing is preferable (higher η_{th}) to throttling for part-load operation, but Mechanically much more complex Every power level requires a different intake valve closing time, thus a different r_{compression}, thus a different r_{expansion} Since intake valve is closed late, maximum mass flow is less than conventional Otto cycle, so less power - at higher power levels can't sustain complete expansion cycle This is an alternative to throttling for premixed-charge engines, but why don't we throttle Diesel engines? (Answer in 2 slides...)

AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

47

Ronney's catechism (3/4)

51

AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

Fuel-air cycles USC Viterb	i eering
 So far we've studied "air cycles" where gas properties (C_P, C_v, γ) are assumed constant so simple relations like Pv^γ = constant & T_{ad} = T_∞ + fQ_R/C_v) can be used This yields simple closed-form results, but isn't realistic More realistic estimate obtained using "real" gas properties from <u>GASEC</u> or other chemical equilibrium program Uses variable gas properties and compositions Shows that rich mixtures have low ηth due to throwing away fuel that can't be burned due to lack of O₂ Shows limitation on work output because of limitation on heat input provided by combustion Still doesn't consider effects of Finite burning time (especially lean & rich mixtures) Incomplete combustion (crevice volumes, flame quenching, etc.) Heat & friction losses Hydrodynamic (pressure) losses in intake/exhaust Etc., etc. 	<u>2</u>
AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis	3

Fuel-air cycle analysis using GASEQ USCViterbi
Under "Units" menu, check "mass", "Joules" and "atm"
make sure the box "frozen composition" is checked
Under "Reactants" select appropriate set of reactants, e.g. "Iso-octane-air flame"
To set the stoichiometry, first click on one of the species (e.g. the fuel), then to the right of the "Stoichiometry" box, click the button called "set"; in the dialog box that pops up, enter the equivalence ratio you want, then close the box
Note (i.e. write down) the mass fraction of fuel
In the box below the reactants box, enter the reactant temperature and pressure (e.g. 298K, 1 atm) and the volume ratio of the compression process (e.g. 1/8 = 0.125 for compression ratio of 8) OR the final pressure (NOT pressure ratio) (e.g. 5 atm for a pressure ratio of 10 with reactants at 0.5 atm) in the locations provided
> Click on the "calculate" box. Note the internal energy, enthalpy and specific volume of both the reactants (call them u_2 , h_2 , v_2) and the products (u_3 , h_3 , v_3)
Click on the "R< <p" button="" calculation="" for="" from="" make="" products="" reactants="" the="" the<br="" this="" to="">next calculation</p">
At the top of the page, under "Problem type" select "adiabatic T and composition at const P" or "adiabatic T and composition at const v" depending on whether the assumption is constant pressure or constant volume combustion
 On the right side of the page, under "Products" select the appropriate products (e.g. "HC/O2/N2 products (extended)")
> Click on the "calculate" button. Note the internal energy, enthalpy and specific volume of the products (u ₄ , h ₄ , v ₄). If Diesel cycle, compute the cutoff ratio $\beta = v_4/v_3$.
AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

≻ C n	Click on the "R<< next calculation	P" button to make	e the products fro	m this calculation t	he reactants for the
► A a	At the top of the p and make sure the	age, under "Prol e box "frozen con	olem type" select nposition" is eithe	adiabatic compres	ssion/expansion" necked, depending
o ⊧lı a	on your assumption n the box below t as r _c for Otto, or r ocation provided	on (usually you w he products box, ₂ /β for Diesel) or t	ant to assume NC enter the require the final pressure	OT frozen) d volume expansio (again, NOT press	n ratio (e.g. same ure ratio) in the
> C	Click on the "calcu u_{ϵ} , h_{ϵ} , v_{ϵ})	ulate" button. No	te product interna	l energy, enthalpy	and specific volum
> C	Calculate the hear = [fuel mass frac Determine work for	t input per unit ma tion (f)] x [heating or each process a	ass of reactants g value of fuel (Q _r according to the fo	ري)] Ilowing table	
			1		
Γ	Process	Compression work in	Heat addition, constant P	Heat addition, constant v	Expansion work out
(Process Control mass (unsteady flow)	Compression work in u ₂ - u ₃	Heat addition, constant P P ₃ (v ₄ - v ₃)	Constant v	Expansion work out u ₄ - u ₅
((Process Control mass (unsteady flow) Control volume (steady flow)	Compression work in u2 - u3 h2 - h3	Heat addition, constant P P ₃ (v ₄ - v ₃) 0	Heat addition, constant v 0 N/A	Expansion work out u ₄ - u ₅ h ₄ - h ₅

Viterbi Fuel-air cycle analysis School of Engineering > Air cycle: doesn't know about combustion limitations, so $\eta_{th} = 1 - (1/r)^{\gamma-1}$, but γ decreases as φ increases (more "heavy" fuel molecules with high molecular mass M, thus low γ) $\gamma = \frac{C_P}{C_V} = \frac{C_V + R}{C_V} = 1 + \frac{\Re/M}{C_V} \Longrightarrow \gamma \downarrow as \ M \uparrow$ > Fuel-air cycle > At low ϕ , just like air cycle since less fuel or anything other than air > As ϕ increases, η_{th} decreases because T_{ad} increases and thus γ decreases $\gamma = \frac{C_P}{C_V} = \frac{C_V + R}{C_V} = 1 + \frac{\Re/M}{C_V}; C_V \uparrow as \ T \uparrow \implies \gamma \downarrow as \ T \uparrow$ $\flat \phi > 1$: not enough O₂ to burn all fuel, so η_{th} decreases rapidly > Real engine > Lower η_{th} even at $\phi = 1$, drops off rapidly below ≈ 0.65 due to lean misfire (lower $\phi \Rightarrow$ lower $T_{ad} \Rightarrow$ much lower S_L , not enough burn time) > η_{th} peaks at slightly < 1 since ϕ < 1 ensures there's enough air to burn every fuel molecule)

AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

56

Example

USC Viterbi School of Engineering

Repeat the previous example of the ideal Diesel air-cycle analysis using a fuel-air cycle analysis (using GASEQ) with a lean iso-octane air mixture with $\phi = 0.792$.

 $P_2 = 1$ atm, $T_2 = 300$ K, f = 0.05 ($\phi = 0.792$), $u_2 = -172.54$ kJ/kg, $\rho_2 = 1.2176$ kg/m³

From GASEQ with "Adiabatic Compression/Expansion," "Frozen Chemistry," and "Volume Products/Volume Reactants" = 0.05 (r = 20), we obtain

 $P_3=53.7$ atm, $T_3=805K$, $u_3=260.17$ kJ/kg, $\rho_3=24.35$ kg/m³

Click "R<<P," select "Adiabatic T and Composition at constant P" which yields

 P_4 =53.7 atm, T_4 =2422K, u_4 =-220.57 kJ/kg, ρ_4 =7.725 kg/m³

The final volume must be the same as the initial volume, and the volume ratio during combustion is $v_4/v_3 = \rho_3/\rho_4 = 24.366/7.7288 = 3.153$, so the volume ratio during expansion must be 20/3.153 = 6.343. Thus, click "R<<P," select "Adiabatic Compression/Expansion," uncheck "Frozen Chemistry," and in "Volume Products/Volume Reactants" enter 6.343. This yields

 $P_5=5.34$ atm, $T_5=1530$ K, $u_5=-1270.00$ kJ/kg, $\rho_5=1.2178$ kg/m³

(which is essentially the same as the initial density of 1.2176 kg/m³, thus we did the expansion right, because the initial mass and volume are the same as the final mass and volume.) AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

C Viterbi Example School of Engineering Compression work = $u_2 - u_3 = -172.54 - 260.17 = -432.71 \text{ kJ/kg}$ Expansion work = $u_4 - u_5 = -220.57 - (-1270.00) = 1049.43 \text{ kJ/kg}$ Work during combustion = $P_3(v_4 - v_3) = P_3(1/\rho_4 - 1/\rho_3)$ $= (53.7 \text{ atm})(1.01325 \text{ x } 10^5 \text{ N/m}^2 \text{ atm})(1/7.725 - 1/24.35)\text{m}^3/\text{kg} (1 \text{ kJ}/1000\text{J})$ = 480.90 kJ/kg Net Work = $-432.71 + 1028.11 + 480.90 = 1076.3 \text{ kJ/kg} = 1.0763 \times 10^6 \text{ J/kg}$ Cut off Ratio = $v_4/v_3 = \rho_3/\rho_4 = 24.35/7.725 = 3.152$ Thermal efficiency = Net work / heat in $= (1.0763 \text{ x } 10^6 \text{ J/kg}) / (0.05 \text{ x } 4.45 \text{ x } 10^7 \text{ J/kg}) = 48.4\%$ $IMEP = \frac{\text{Net work}}{V_d} = \frac{(\text{Net work})/\text{mass}}{V_d / \text{mass}} = \frac{\text{Net work}/\text{mass}}{V_d / (\rho_2 V_d)} = \rho_2(\text{Net work}/\text{mass})$ $\Rightarrow IMEP = \frac{(1.2176kg / m^3)(1.076 \times 10^6 J / kg)}{12.9atm} = 12.9atm$ $101325N / m^2 atm$ **Comment:** GASEQ considers dissociation of products, and C_p and C_V are increase with temperature, both of which greatly decrease T₄ compared to the air cycle analysis. The net work, efficiency and IMEP are similar to the previous air-cycle example because of the use of an effective $\gamma = 1.3$; if we had used $\gamma = 1.4$, the air-cycle analysis would have yielded considerably higher efficiency and IMEP AME 436 - Lecture 8 - Spring 2019 - Ideal cycle analysis

Summary	USC Viterbi
 Summary Air-cycle analysis is very useful for understanding ICE pe P-V & T-s diagrams and numerical analysis are complem Various cycles used to model different "real" engines, but isentropic compression/expansion & constant V or P head Engines are air processors; more air processed ⇒ more [The differences between premixed (gasoline-type) and no charge (diesel-type) combustion lead to major differences performance and thus which applications are most approp Power is controlled by air flow (via throttle) in premixed charge engines Compression ratio is limited by knock in premixed charge engines Fuel-air cycles, where "real" gas properties are employed realistic approximations than air cycles but still removed f The ideal cycle analyses do NOT show the limitations of imposed by heat losses, slow burning, knock, friction, etc 	rformance entary most involve t addition power produced on-premixed s in priate arge engines but engines but by I, are more from reality performance coming up in
next 2 lectures	alvsis 61