

Outline	USC Viterbi School of Engineering
Description of pollutants	
Emissions standards	
≻ CO	
Hydrocarbons	
Nitrogen oxides	
≻ Soot	
Remediation (cleanup) of emissions	
AME 436 - Spring 2019 - Lecture 5 - Emissions formation	and remediation ²

Tie	er III em	issions stand	ards			/iterbi
 Emissions (in g or mg per mile) measured using a particular EPA-standard driving cycle U.S. "Tier III" emissions standards (started 2017) require a certain fleet average for each manufacturer – can sell "dirty" Bin 160 vehicles if offset by cleaner lower-number Bin vehicles See for example <u>https://www.dieselnet.com/standards/us/ld_t3.php</u> "Bin 0" vehicles (e.g. electric) not charged for emissions resulting from making the electricity! 						
	Din	NMOG+NOx	PM	CO	HCHO	
	DIII	mg/mi	mg/mi	g/mi	mg/mi	
	Bin 160	160	3	4.2	4	
	Bin 125	125	3	2.1	4	
	Bin 70	70	3	1.7	4	
	Bin 50	50	3	1.7	4	
	Bin 30	30	3	1.0	4	
	Bin 20	20	3	1.0	4	
	Bin 0	0	0	0	0	
AME 436 - Spring 2019 - Lecture 5 - Emissions formation and remediation						

Description of pollutants	USC Viterbi School of Engineering
➤ Emissions are trace amounts in the combustion produtes a second s	ucts .77 N ₂ ume 30 mi/gal: $r = 0.0056 \frac{g_{-}C_{in CO}}{g_{-}C_{in fuel}}$
 > Only 1 C atom in 1/0.0056 = 178 can be emitted as CO. > Other emissions (NO, CH₂O, etc.) much lower fractions > Recall our mantra (Lecture 1) - "emissions are a NON EQUILIBRIUM PROCESS" > If we follow two simple rules: > Use lean or stoichiometric mixtures > Allow enough time for chemical equilibrium as products then NO, CO, UHCs and C(s) (soot) are practically ze > but we are not patient enough (or unable to cool do enough)! 	o not CO ₂ s, e.g. 10 ⁻⁴ I- cool down ro own slowly
AME 436 - Spring 2019 - Lecture 5 - Emissions formation and	d remediation ⁸

CO, UHCs, formaldehyde	USC Viterbi School of Engineering
 > Won't discuss hydrocarbon oxidation chemistry at le covered in AME 513 (Fundamentals of Combustion AME 436 Lecture 10 (in context of engine knock) > Key steps in oxidation (see next page) Fuel + O₂ → CO + H₂ (fuel breakdown in flames is related by the steps of the steps in context of the steps is related by the steps in the steps in the steps in the steps of the steps in t	ength here -); also a bit in atively fast)
$2H_2 + O_2 \rightarrow 2H_2O$ $2CO_2 + O_2 \rightarrow 2CO_2$ (last and alowest step)	
 > If insufficient time for combustion, CO is emitted from > Need OH radicals to obtain CO + OH → CO₂ + H, s enough temperatures for H + O₂ → OH + O chain be > Formaldehyde (HCHO) an important step to CO for CH₄ + OH → CH₃ + H₂O (formation of methyl radical) CH₃ + O → HCHO + H (formation of formaldehyde) HCHO + H → HCO + H₂ (formation of formyl radical) 	m flame o need high ranching rmation, e.g.
HCO + H \rightarrow CO + H ₂ (formation of CO)	
AME 436 - Spring 2019 - Lecture 5 - Emissions formation a	nd remediation ¹⁰

CO and UHCs	USC Viterbi School of Engineering
 CO Usually expressed as Brake Specific CO (grams of 0 kW-hr of shaft work produced) Rich mixtures: CO is unavoidable - not enough O₂ to CO₂ (but we don't want to burn rich anyway, efficien Lean mixtures: CO still formed, actually gets worse a (decreases T_{ad}, slower reaction, less time for CO to Net result: CO is minimum at φ slightly lean - high T_a available UHCs Similar to CO: higher for leaner mixtures - decreases reaction, more unburned fuel 	CO emitted per o burn all C to cy will be low) as ϕ decreases CO ₂ conversion) ad, excess O ₂ T _{ad} , slower
AME 436 - Spring 2019 - Lecture 5 - Emissions formation a	and remediation ^{I ∠}

Unbu	Irned hydrocarbons (UHCs)	USC Viterbi School of Engineering
 If fu In the second second	el decomposes quickly, why are UHCs still en ne engine, emissions of UHCs come from Raw unburned fuel (next slide) Fuel that didn't burn all the way to CO ₂ and H ₂ O Lubricating oil (especially in 2-stroke engines usir mixtures)	mitted? ng fuel + oil
> Oth	er than tailpipe, UHCs may come from Fuel tank (older cars without evaporative emission Gasoline filling station (in regions without vapor re Tires (!!!) – several mg/mile	n controls) ecovery system)
AME	E 436 - Spring 2019 - Lecture 5 - Emissions formatio	on and remediation ¹⁴

Thermal or Zeldovich NOUSCViterbi
School of Plagmenting> Extremely high activation energy due to enormous strength of N=N bond
(≈ 220 kcal/mole)(1) $O + N_2 \rightarrow NO + N$ $(E_1 = 76,500 \text{ cal/mole}; Z_1 = 2 \times 10^{14}, n_1 = 0)$
(2) $N + O_2 \rightarrow NO + O$ (2) $N + O_2 \rightarrow NO + O$ $(E_2 = 6,300 \text{ cal/mole}; Z_2 = 6 \times 10^9, n_2 = 0)$ N2 + $O_2 \rightarrow 2 \text{ NO}$ > Recall reaction rate expressions (lecture 4)Generic : $\frac{d}{dt} \{v_A[A]\} = \frac{d}{dt} \{v_B[B]\} = -Z[A]^{v_A}[B]^{v_B}T^n \exp(-E_{3RT})$ $\Rightarrow \frac{d[N_2]}{dt} = \frac{d[O]}{dt} = -Z_1[N_2]^1[O]^1T^{n_1}\exp(-E_1/\Re T)$ $\Rightarrow \frac{d[N]}{dt} = \frac{d[O_2]}{dt} = -Z_2[N]^1[O_2]^1T^{n_2}\exp(-E_2/\Re T)$ > Reaction (1) usually slower; $Z_1 \exp(-E_1/\Re T) < Z_2 \exp(-E_2/\Re T)$ for T < 3394K</td>> 1 NO molecule from reaction (1) quickly yields 2 NO molecules if (2) is fastAME 436 - Spring 2019 - Lecture 5 - Emissions formation and remediation

Summary - most important points	USC Viterbi
 Emissions cleanup Conflicting requirements - rich & cool for NO_x, lean & ho Premixed-charge (gasoline-type) engines Catalytic converter can do both jobs only very close to stoich Use EGR (no excess O₂) rather than lean mixture to reduce reduction Nonpremixed-charge (Diesel-type) engines Can't burn near-stoichiometric because of sooting – must state CO and UHC low due to lean mixtures Need particulate traps for soot Need SCR for NO_x – works even in lean mixtures 	ot for CO & UHC niometric T _f for NO _x ay lean
AME 436 - Spring 2019 - Lecture 5 - Emissions formation a	nd remediation ³⁸