

Outline	USC Viterbi School of Engineering
 Why do we need to study combustion? Types of flames Premixed Nonpremixed Chemical reaction rates Law Of Mass Action (LOMA) Arrhenius form of temperature dependence Premixed flames Deflagrations Turbulence effects Homogeneous reaction Nonpremixed flames General characteristics Droplets Gas-jet Turbulence effects 	School of Engineering
AME 436 - Lecture 4 - Spring 2019 - Basics of Com	bustion 2

Types of flames	USC Viterbi
 Premixed - reactants are completely mixed down scale before combustion is initiated; several flavor Deflagration Detonation Homogeneous reaction Nonpremixed - reactants mix only at the time of or have to mix first then burn; several flavors Gas jet (Bic lighter) Liquid fuel droplet Liquid fuel jet (e.g. Diesel spray flame, candle) Solid (e.g. coal particle, wood) 	to the molecular rs
AME 436 - Lecture 4 - Spring 2019 - Basics of Con	ubustion 4

Deflagrations - burning velocity USC Viterbi	ring
 > Estimate of i Conduction heat transfer rate = -kA(ΔT/δ) k = gas thermal conductivity, A = cross-sectional area of flame ΔT = temperature rise across front = T_{ad} - T_∞ δ = thickness of front (unknown at this point) > Estimate of ii Chemical enthalpy flux through front = (mass flow) fQ_R = mC_PΔT m = ρuA (ρ = density of reactants = ρ_∞, u = velocity = S_L) Chemical enthalpy flux = ρ_∞C_PS_LA(ΔT) > Estimate of iii Rate of thermal enthalpy generation by reaction = Q_R x (d[F]/dt) x M_{fuel} x Volume [F] = fuel concentration (moles/volume); Volume = Aδ; Q_R = C_P(ΔT)/f 	-
Total mass (Mass total / volume) (Mass total / volume) ρ_{∞}	
Combining: rate of thermal enthalpy generation = $\rho_{\infty}C_{p}(\Delta T)\omega A\delta$ ω = overall reaction rate = (d[F]/dt)/[F] _{\infty} (units 1/s)	
AME 436 - Lecture 4 - Spring 2019 - Basics of Combustion	3

Deflagrations - example Subset Using S_L vs. pressure data, the best power-law fit is S_L ~ P^{-0.404}, thus (n-2)/2 = -0.404 or n = 1.19 From the Zeldovich equation $S_{L} = \left\{ 2\alpha \left(\frac{E}{\Re T_{ad}} \right)^{-(n+1)} \left(\frac{T_{ad}}{T_{ad} - T_{\infty}} \right)^{n+1} Z[F]_{\infty}^{n-1} \exp \left(\frac{-E}{\Re T_{ad}} \right) \right\}^{1/2}$ $\ln(S_{L}) = \frac{1}{2} \ln \left[2\alpha \left(\frac{E}{\Re T_{ad}} \right)^{-(n+1)} \left(\frac{T_{ad}}{T_{ad} - T_{\infty}} \right)^{n+1} Z[F]_{\infty}^{n-1} \right] - \frac{E}{2\Re} \left(\frac{1}{T_{ad}} \right)$ For the ln() term hardly changes with T_{ad}, so $\ln(S_{L}) \approx \text{Const.} + (-E/2\Re)(1/T_{ad})$ thus the slope of ln(S_L) vs. 1/T_{ad} ≈ -E/2\Re. From the linear fit the slope is -9273, hence E = -2(-9273)(1.987 cal/moleK) = 36.85 kcal/mole

Homogeneous reaction USC Viter) i neering	
Energy equation - if all fuel consumed		
$C_V(T_{ad} - T_{\infty}) = fQ_R = \left[Y_f(t=0) - Y_f(t=\infty)\right]Q_R (Y_f = \text{fuel mass fraction})$		
So at any instant in time (assuming no heat loss)		
$C_V(T(t) - T_{\infty}) = \left[Y_f(0) - Y_f(t)\right]Q_R$		
where $Y_{f}(t)$ is the instantaneous fuel mass fraction (at t = 0, no fuel		
consumed, T = initial temperature = T_{∞} ; at t = ∞ , Y _f = 0, all fuel		
consumed, $I = I_{ad}$; then from page 16		
$Y_f(t=0) = f = \frac{[F]_{\infty}M_{fuel}}{\rho_{\infty}} \Rightarrow Y_f(t) = \frac{[F](t)M_{fuel}}{\rho_{\infty}}; [F] = \text{Fuel conc.} \left(\frac{moles}{m^3}\right)$		
$\Rightarrow C_{V}(T(t) - T_{\infty}) = \frac{Q_{R}M_{fuel} \left\{ [F]_{\infty} - [F](t) \right\}}{\rho_{m}} (\text{Eq. 1})$		
(this simply says that there is a linear relationship between the amount of fuel consumed and the temperature rise)		
> Mass conservation – with $v_A = v_B = 1$, where A = fuel, B = oxygen		
$\frac{d[A]}{dt} = \frac{d[F]}{dt} = \frac{d[B]}{dt} = \frac{d[Ox]}{dt} \Longrightarrow [Ox]_{\infty} - [Ox](t) = [F]_{\infty} - [F](t) (Eq. 2)$		
AME 436 - Lecture 4 - Spring 2019 - Basics of Combustion	34	

Homogeneous reaction USC Viterbi	ering
 Equation looks scary but just a 1st order nonlinear ordinary differential equation - integrate to find ε(τ) (amount of product formed as a function of time) for various φ (stoichiometry), β (activation energy), initial temp. (T_∞), H (heat release) Initial condition is ε = 1 at τ = 0 (no fuel burned at time = 0) What do we expect? Since reaction rate is slowest at low T, reaction starts slowly then 	
 Since reaction rate is slowest at low 1, reaction starts slowly then accelerates "Induction time" (e.g. time to reach 90% completion of reaction, ε = 0.1) should depend mostly on initial temperature T_∞, not final temperature T_{ad} since most of the time needed to react is before self-acceleration occurs 	
 Very different from propagating flames where S_L depends mostly on T_{ad} not T_∞ because in for flames there is a source of high T (burned gases) to raise gas T to near T_{ad} before reaction started; in the homogeneous case no such source exists This means that the factors that affect flame propagation and knock 	
AME 436 - Lecture 4 - Spring 2019 - Basics of Combustion ³⁶	6

Summary – combustion (3/3)	USC Viterbi School of Engineering
 4 types of properties used to describe combustion Thermodynamic properties & combinations of them Temperature (T), pressure (P), volume (V), internal energi (H), entropy (S), specific heat (C_P, C_v, γ = C_P/C_v), Gibbs frequilibrium constants (K), density (ρ), mole fraction (X), fu (f), transfer number (B), molecular weight (M), gas constations sound speed (c), heating value (Q_R), latent heat of vaporities 	y (U), enthalpy ee energy (G), lel mass fraction nt (೫ or R), zation (L _V)
 Transport properties » Thermal conductivity (k), thermal diffusivity (α = k/ρC_P), m (D), momentum diffusivity aka kinematic viscosity (v) Chamical rate properties 	ass diffusivity
 Activation energy (E), pre-exponential factor (Z), order of exponent of temperature dependence outside Arrhenius t Fluid mechanical properties Velocity (u), turbulence intensity (u'), integral length scale 	reaction (n), erm (a) (Lı), Re∟
 From these we determine other properties, e.g. Thermodynamic - T_{ad}, X_i at equilibrium, P for const-V of work in/out due to compression/expansion Combustion - S_L, S_T, ignition time, droplet burning rate jet flame length (L_f) 	combustion, constant (K),
AME 436 - Lecture 4 - Spring 2019 - Basics of Com	bustion ⁵⁴