

Outline	USC Viterbi School of Engineering
 Why do we need to invoke chemical equilibrium? Degrees Of Reaction Freedom (DORFs) Conservation of atoms Second Law of Thermodynamics for reactive syste Equilibrium constants Application of chemical equilibrium to hydrocarbon combustion Application of chemical equilibrium to compression processes 	ems -air n /expansion
AME 436 - Spring 2019 - Lecture 3 - Chemical Thermo	odynamics 2 2

2nd law of thermo for reacting systems Store Tension For a mixture of ideal gases with 1 DoRF that reacts according to $v_AA + v_BB \Leftrightarrow v_CC + v_DD$, e.g. $1 \text{ CO}_2 \Leftrightarrow 1 \text{ CO} + .5 \text{ O}_2$ $A = \text{ CO}_2, v_A = 1, B = \text{ nothing, } v_B = 0, C = \text{ CO, } v_C = 1, D = \text{ O}_2, v_D = 0.5$ with dg = 0, "it can be shown" $\frac{X_C \cdot X_D \cdot v_D}{X_A \cdot v_A \cdot X_B \cdot v_B} \left(\frac{P}{P_{ref}}\right)^{v_C + v_D - v_A - v_B} = \frac{K_C \cdot v_C \cdot K_D \cdot v_D}{K_A \cdot v_A \cdot K_B \cdot v_B}$ $X_i = \text{ mole fraction of } i = \frac{n_i}{n_{total}} = \frac{n_i}{\sum_{i=1}^N n_i}; \text{ recall } \sum_{i=1}^N X_i = 1$ Note n_{total} includes all species in the mixture, not just A, B, C, and D $P = \text{ total pressure, } P_{ref} = \text{ reference pressure } = 1 \text{ atm}$ $K_i = \text{ equilibrium constant of } i \text{ (from tables)} = \text{ function of T only (not P)}$ **AME 436 - Spring 2019 - Lecture 3 - Chemical Thermodynamics 2**

This set of 12 simultaneous nonline to the set of 12 simultaneous nonline to the set of the set	near algebraic equations looks			
 This set of 12 simultaneous nonlinear algebraic equations looks hopeless, but computer programs (using somewhat different methods more amenable to automation) (e.g. <u>GASEQ</u>) (gaseq.co.uk) exist Typical result, for stoichiometric CH₄-air, 1 atm, constant P 				
Reactants Species No.Moles MolFrac K N2 0.79000 0.71493 02 0.21000 0.19005 CH4 0.10500 0.09502 0.09502 0.09502	Beactants Products 300. Temperature, K 2226. 1.0 Pressure, atm 1.0 Volume Products/Reactants 7.4754 Moles Products/Reactants 1.00747 -1.688 H0, kcal/mol -1.675 47.857 S0, cal/mol/K 64.735 7.102 Cp. cal/mol/K 9.896 1.209 Competer Conference 1.211			
Stoichiometry, Phi 1.000 Set. UniformT Products	1.303 Gamma, CpCV 1.201 27.64 Mean Molecular Weight, g 27.43 1.1226 Density, kg/m3 0.15017 353.9 Sound speed, m/s 918.6			
Species No. Moles MolFrac K N2 0.78890 0.70864 H20 0.20413 0.18336 C02 0.09503 0.008536 C0 0.00997 0.00896 02 0.00508 4.56e-03 0H 0.00325 2.92e-03 H 4.340e-04 3.90e-04 0 2.371e-04 2.13e-04 H2 0.00403 3.62e-03 NO 0.00220 1.98e-03	-61.07 Enthalpy, H, kcal/kg -61.07 1731.74 Entropy, S, cal/kg/K 2360.00 -82.64 Intern Energy, U, kcal/kg -222.34 -580.59 Free Energy, G, kcal/kg -5314.39 24.6178 Volume, m3 182.663 2.45E+19 Molecules/cc 3.30E+18 4.06E-05 Woles/cc 5.47E-06 1.80E-05 Viscosity, kg/m/s 7.08E-05 1.60E-05 Kinematic/visc, m2/s 4.72E-04 5.79E-03 ThermCond,cal/m/K/s 3.16E-02 2.01E-05 ThDiffusivity, m2/s 5.84E-04	15		

Adiabatic flame temp - hydrocarbons USCViterbi	
Adiabatic flame temperature (T _{ad}) peaks slightly rich of stoichiometric - since O ₂ is highly diluted with N ₂ , burning slightly rich ensures all of O ₂ is consumed without adding much extra unburnable molecules	
T _{ad} peaks at ≈ 2200K for CH ₄ , slightly higher for C ₃ H ₈ , iso-octane (C ₈ H ₁₈) virtually same as C ₃ H ₈	
H ₂ has far heating value per unit fuel mass, but only slightly higher per unit total mass (due to "heavy" air), so T _{ad} not much higher	
➢ Also - massive dissociation as T increases above ≈ 2400K, keeps peak temperature down near stoichiometric	
Also - since stoichiometric is already 29.6% H ₂ in air (vs. 9.52% for CH ₄ , 4.03% for C ₃ H ₈), going richer does not add many extra fuel molecules	
CH ₄ - O ₂ MUCH higher - no N ₂ to soak up thermal energy without contributing enthalpy release	
Constant volume - same trends but higher T _{ad}	
AME 436 - Spring 2019 - Lecture 3 - Chemical Thermodynamics 2	

Compression / expansion	USC Viterbi School of Engineering
Expand at constant entropy to 1 atm, frozen composition	sition:
T = 1738K, X _{CO} = <mark>0.0129</mark> , X _{O2} = 0.3376, X _{CO2} = 0.6495, h = -4795 kJ/kg, u = -5159 kJ/kg, s = 7381J/kgK	,
 Work done (control volume, steady flow) = h_{before} - h_{after} = +1011 kJ/kg Work done (control mass) = u_{before} - u_{after} = +762 kJ/kg 	g
Expand at constant entropy to 1 atm, equilibrium co	mposition:
T = 1794K, X _{CO} = 0.00022, X _{O2} = 0.3334, X _{CO2} = 0.666 (significant recombination) h = -4811 kJ/kg, u = -5184 kJ/kg, s = 7382 J/kgK	4
 Work done (control volume, steady flow) = +1027 kJ/ (1.6% higher) Work done (control mass) = 787 kJ/kg (3.3% higher) 	kg
Moral: let your molecules recombine!	
AME 436 - Spring 2019 - Lecture 3 - Chemical Thermod	lynamics 2 ²⁴

Summary - Lecture 3

USC Viterbi School of Engineering

- In order to understand what happens to a chemically reacting mixture if we wait a very long time, we need to apply
 - > 1st Law of Thermodynamics (conservation of energy) but this doesn't tell us what the allowable direction of the reaction is; A → B or B → A are equally valid according to the 1st Law
 - > 2nd Law of Thermodynamics (increasing entropy) invokes restrictions on the direction of allowable processes (if A \rightarrow B is allowed then B \rightarrow A isn't, unless it's an isentropic process)
- Equilibrium occurs when the worst possible end state is reached; once this point is reached, no further chemical reaction is possible unless something is changed, e.g. T, P, V, etc.
- > The consequences of the 2nd law are
 - > ds ≥ 0 (constant u & v, e.g. a rigid, insulated box)
 - > dg = d(h Ts) \leq 0 (constant T and P, e.g. isothermal piston/cylinder)
 - ds = 0 (reversible adiabatic compression / expansion)

AME 436 - Spring 2019 - Lecture 3 - Chemical Thermodynamics 2 25

