

Outline	USC Viterbi School of Engineering
 > Why hypersonic propulsion? > What's different about it? > "Conventional" ramjet (heat addition at M << 1) > Heat addition in compressible flows at M ≠ 0 (shorter of what I didn't cover in Lecture 12) > AirCycles4Hypersonics.xls spreadsheet > "Scramjet" cycles and performance 	ened version
AME 436 - Spring 2019 - Lecture 15 - Hypersonic Pro	opulsion 2

"Conventional" ramjet

USC Viterbi School of Engineering

- > Incoming air decelerated isentropically to M = 0 high T, P
- > No compressor needed, so only parameters are M₁
- $\succ\,$ Heat addition at M = 0 no loss of P_t to max. allowable T_4 = $\tau_\lambda T_1$
- > Expand to $P_9 = P_1$
- > Doesn't work well at low M Pt/P1 & Tt/T1 low Carnot efficiency low
- As M increases, Pt/P1 and Tt/T1 increases, cycle efficiency increases, but if M too high, limited ability to add heat (Tt close to Tmax) - high efficiency but less thrust

"Conventional" ramjet example
Example:
$$M_1 = 5, \tau_{\lambda} = 12, \gamma = 1.4$$

Initial state (1): $M_1 = 5$
State 2: decelerate to $M_2 = 0$
 $T_2 = T_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right) = T_1 \left(1 + \frac{1.4 - 1}{2} 5^2 \right) = 6T_1$
 $P_2 = P_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right)^{\gamma - 1} = P_1 \left(1 + \frac{1.4 - 1}{2} 5^2 \right)^{1/4/1.4 - 1} = 529.1P_1$
State 4: add at heat const. P; $M_4 = 0, P_4 = P_2 = 529.1P_1, T_4 = 12T_1$
State 9: expand to $P_9 = P_1$
 $P_4 = 529.1P_1 = P_9 \left(1 + \frac{\gamma - 1}{2} M_9^2 \right)^{\gamma - 1} = P_1 \left(1 + \frac{1.4 - 1}{2} M_9^2 \right)^{1/4/1.4 - 1} \Rightarrow M_9 = 5.00$
 $T_4 = 12T_1 = T_9 \left(1 + \frac{\gamma - 1}{2} M_9^2 \right) = T_9 \left(1 + \frac{1.4 - 1}{2} 5^2 \right) \Rightarrow T_9 = 2T_1$

1D steady flow of ideal gases (Lecture 11) SC Viter	bi
 Assumptions Ideal gas, steady, quasi-1D Constant C_P, C_v, γ ≡ C_P/C_v Unless otherwise noted: adiabatic, reversible, constant area Note since 2nd Law states dS ≥ δQ/T (= for reversible, > for irreversible), reversible + adiabatic ⇒ isentropic (dS = 0) Governing equations Equations of state h₂ - h₁ = C_P(T₂ - T₁) P = ρRT; S₂ - S₁ = C_p ln(T₂/T₁) - Rln(P₂/P₁) Isentropic (S₂ = S₁) (where applicable): P₂/P₁ = (T₂/T₁)^{γ/(γ-1)} Mass conservation: ṁ = ρ₁u₁A₁ = ρ₂u₂A₂ Momentum conservation, constant area duct (see lecture 11): AdP + ṁdu + C_f(ρu²/2)Cdx = 0 C_f = friction coefficient; C = circumference of duct No friction: P₁ + ρ₁u₁² = P₂ + ρ₂u₂² Energy conservation: h₁ + u₁²/2 + q - w = h₂ + u₂²/2 q = heat input per unit mass = fQ_R if due to combustion w = work output per unit mass 	
AME 436 - Spring 2019 - Lecture 15 - Hypersonic Propulsion	14

	Const. A	Const. P	Const. T
Μ	Goes to M = 1	Decreases	Increases
Area	Constant	Increases	Min. at M = $\gamma^{-1/2}$
Ρ	Decr. M < 1 Incr. M > 1	Constant	Decreases
Pt	Decreases	Decreases	Decreases
Т	Incr. except for a small region at M < 1	Increases	Constant
T _t	Increases	Increases	Increases

Example	USC Viterbi School of Engineering
 Consider a very simple propulsion system in a standard atmosphere at 1 (227K and 0.0107 atm, with γ = 1.4) in which (1) Incoming air is decelerated isentropically from M₁ = 15 until T = 3000 (2) Heat is added at constant T until ambient pressure is reached (not a geo operate, but this represents a sort of maximum heat addition) 	100,000 feet DK bod way to
(a) To what Mach number could the air be decelerated if the maximum temperature is 3000K? What is the corresponding pressure?	n allowable gas
$T_{1}\left(1+\frac{\gamma-1}{2}M_{1}^{2}\right)=T_{2}\left(1+\frac{\gamma-1}{2}M_{2}^{2}\right)$	
$(227K)\left(1+\frac{1.4-1}{2}15^2\right) = (3000K)\left(1+\frac{1.4-1}{2}M_2^2\right)$	
$M_2^2 = \frac{2}{1.4 - 1} \left[\frac{227K}{3000K} \left(1 + \frac{1.4 - 1}{2} 15^2 \right) - 1 \right] = 12.403 \Longrightarrow M_2 = 3.522$	
$\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} = \left(\frac{3000K}{227K}\right)^{\frac{1}{2}} = 8391; P_2 = 8391P_1 = 8391(.0107) = 8$	39.79 <i>atm</i>
AME 436 - Spring 2019 - Lecture 15 - Hypersonic Propu	Ilsion 42

