

Outline	USC Viterbi School of Engineering
 Component performance - definitions AirCycles4Propulsion spreadsheet Non-ideal performance Diffuser Compressor Burner Turbine Nozzle Fan Heat loss 	
AME 436 - Spring 2019 - Lecture 14 - Nonideal effects in pro	pulsion cycles ²

AirCycles4Propulsion.xls	USC Viterbi School of Engineering
 Work or heat in or out going from step i to step i+1 cd according to dQ = m_aC_P(T_{i+1,t} - T_{i,t}) and dW = -m_aC_P((heat positive if into system, work positive if out of sy Diffuser Mach number decrements from flight Mach number (Mafter diffuser in 25 equal steps Stagnation pressure decrements from its value at M₁ (n_d^{γ/(γ-1)}P_{1t} in 25 equal steps Static P and T calculated from M and P_t, T_t Sound speed (c) calculated from T, then u calculated No heat input or work output in diffuser but may have transfer (page 7) Fan-flow diffuser exactly same as main flow diffuser e rate α times higher (η_{d,main flow} = η_{d,fan flow} assumed) 	omputed $T_{i+1,t} - T_{i,t}$) (stem) M_1) to $M_2 = 0$ (P_{1t}) to $\pi_d P_{1t} =$ from c and M wall heat xcept mass flow
AME 436 - Spring 2019 - Lecture 14 - Nonideal effects in pro	pulsion cycles ⁸

USCViterbi AirCycles4Propulsion.xls School of Engineering > Turbine > Expansion to pay for compressor work done in two steps: (1) Wall heat transfer at constant P according to formula on page 7 (step i,a to step i,b) (2) Expansion according to isentropic compression law with efficiency η_{turb} (step i,b to step i+1,a) $\eta_{turb} = \frac{T_{i+1,at} / T_{i,b,t} - 1}{\left(P_{i+1,t} / P_{i,t}\right)^{\gamma - 1/\gamma} - 1} \Longrightarrow T_{i+1,a,t} = T_{i,b,t} \left(1 + \eta_{turb} \left[\left(P_{i+1,t} / P_{i,t}\right)^{\gamma - 1/\gamma} - 1\right]\right)$ Each of 25 expansion steps provides (after including losses due to irreversibility) 1/25 of the work required to drive turbine (calculated in compressor analysis) > Work per step = - $\dot{m}_a C_P(T_{i+1,a,t} - T_{i,a,t})$, Mach number = 0 throughout > Expansion through fan turbine to pay for fan work - same as main turbine, except equate fan work to turbine work 11

AME 436 - Spring 2019 - Lecture 14 - Nonideal effects in propulsion cycles

AirCycles4Propulsion.xls	USC Viterbi School of Engineering
 Nozzle No heat input or work output Static (not stagnation) pressure decrements from va afterburner to specified exhaust pressure P₉ in 25 e Stagnation pressure decrements from its value after to π_nP_{7t} = η_n^{γ/(γ-1)}P_{7t} in 25 equal steps T_t changes due to wall heat transfer (page 7) M calculated from P (static pressure) and P_t (stagnation) T (static temperature) calculated from M and T_t (stagnation) Sound speed (c) calculated from T u calculated from c and M 	Ilue after qual steps afterburner (P _{7t}) tion pressure) gnation
 Same rules apply to fan nozzle except » Go directly from state 3' (after fan compressor) through r (no combustor or turbine) » Mass flow is α times higher » Assume P_{exit} = P_{ambient} always, i.e. P₉' = P₁ 	nozzle to state 9'
AIVIE 436 - Spring 2019 - Lecture 14 - Nonideal effects in pi	ropulsion cycles

How accurate	e is aircyc	cles4rec	ips.xls?		terbi			
 > Real engine: GE90-85B turbofan, no afterburner > Static sea level (M₁ = 0, T₁ = 300K, P₁ = 1 atm) or cruise (M₁ = 0.83, T₁ = 219K, P₁ = 0.235 atm) > Reported properties: π_c = 39.3; π_c' = 1.65; α = 8.4; Inlet area = 7.66 m²; C_D = 0 (drag not included in reported performance) > Guessed properties > Turbine inlet temp. = 1700K ⇒ τ_λ = 5.67 (static) or 7.76 (cruise) > η_{diffuser} = 1 (static) or 0.97 (cruise); η_{comp} = 0.9; π_{burner} = 0.98; η_{turb} = 0.9; η_{nozzle} = 0.98; η_{fan} = 0.9 > h = 0.01 (all wall temperatures = average gas T for that component) > Results (very sensitive to η_{diffuser} because of huge fan air flow!) 								
	Spec. Thrust (static)	TSFC (static)	Spec. Thrust (cruise)	TSFC (cruise)				
Spreadsheet	0.988	1.095	0.774	2.355				
Actual	0.788	1.183	??? (air flow not reported)	2.213				
		no 44 - Nomid	a al affa ata in an		32			

Example - numerical

USC Viterbi School of Engineering

For a nonideal turbofan with bypass ratio (α) = 8, γ = 1.35, compressor pressure ratio (π_c) = 30, fan pressure ratio (π_c ') = 1.8, flight Mach number (M_1) = 0.8, turbine inlet temperature = 1800K, ambient pressure (P_1) = 0.25 atm and ambient temperature (T_1) = 225 K, with $P_9 = P_1$ and FAR << 1, and component efficiencies as follows: diffuser (η_d) = 0.97, compressor (η_c) = 0.90, combustor (π_b) = 0.98, turbine (η_t) = 0.90, nozzle (η_d) = 0.98, fan (η_t) = 0.90, determine the following (this is the same as the example in lecture 13 except non-ideal components are presumed here): (a) T, P and M after the diffuser (station 2) $M_2 = 0$ by assumption; $T_2 = T_{\mu} = T_1 \left(1 + \frac{\gamma - 1}{2}M_1^2\right) = (225K)\left(1 + \frac{1.35 - 1}{0.8^2} - 250.2K\right)$

$$P_{2} = P_{2t} = (\eta_{d})^{\gamma_{r-1}} P_{1t} = (\eta_{d})^{\gamma_{r-1}} P_{1} \left(1 + \frac{\gamma - 1}{2}M_{1}^{2}\right)^{\gamma_{r-1}} = (0.97)^{1.35/(1.35-1)} (0.25atm) \left(1 + \frac{1.35 - 1}{2}0.8^{2}\right)^{1.35/(1.35-1)} = 0.335 atm$$

(b) T, P and M after the compressor (station 3) $M_3 = 0$ by assumption; $\pi_c = 30 = P_{3t} / P_{2t} \Rightarrow P_{3t} = P_3 = 30 \times 0.335 atm = 10.04 atm$

$$\frac{T_{3t}}{T_{2t}} = 1 + \frac{\left(\pi_{comp}\right)^{\gamma - 1/\gamma} - 1}{\eta_{comp}} \Rightarrow T_3 = T_{3t} = 250.2K \left(1 + \frac{\left(30\right)^{\gamma - 1/\gamma} - 1}{0.9}\right) = 643.6K$$

(c) T, P and M after the combustor (station 4) $M_4 = 0$; $P_{4t} = P_4 = (\pi_b)P_{3t} = 0.98(10.04 \text{ atm}) = 9.84 \text{ atm}$; $T_{4t} = T_4 = 1800K$ AME 436 - Spring 2019 - Lecture 14 - Nonideal effects in propulsion cycles ³³

Example - numerical (continued) (f) T, P and M after the nozzle (station 9, and 9' for the fan stream) (note that for the fan stream, nothing happens between stations 3 and 6) $P_9 = 0.25atm$ by assumption; $P_{9t} = (\eta_{nozile})^{\frac{1}{2}t-1} P_{6t} = (0.98)^{1.35/1.35-1} (0.902atm) = 0.834atm$ $\frac{P_{9t}}{P_9} = \left(1 + \frac{\gamma - 1}{2}M_9^2\right)^{\frac{1}{\gamma - 1}} \Rightarrow \left(\frac{0.834atm}{0.25atm}\right)^{1.35-\frac{1}{3}.35} = \left(1 + \frac{1.35 - 1}{2}M_9^2\right) \Rightarrow M_9 = 1.448$ $T_{9t} = T_{6t} = T_9 \left(1 + \frac{\gamma - 1}{2}M_9^2\right) \Rightarrow T_9 = T_{9t} / \left(1 + \frac{\gamma - 1}{2}M_9^2\right) = 1040.5K / \left(1 + \frac{1.35 - 1}{2}1.448^2\right) = 761.2K$ $P_9 = 0.25atm$ by assumption; $P_{9t} := (\eta'_{nuzzle})^{\frac{1}{2}t-1}P_{6t} := (\eta'_{nuzzle})^{\frac{1}{2}t-1}P_{3t} := (0.98)^{1.35/1.35-1} (0.603atm) = 0.558atm$ $\frac{P_{9t}}{P_9} := 0.25atm$ by assumption; $P_{9t} := (\eta'_{nuzzle})^{\frac{1}{2}t-1}P_{6t} := (\eta'_{nuzzle})^{\frac{1}{2}t-1}P_{3t} := (0.98)^{1.35/1.35-1} (0.603atm) = 0.558atm$ $\frac{P_{9t}}{P_9} := (1 + \frac{\gamma - 1}{2}M_9^2)^{\frac{1}{2}} \Rightarrow \left(\frac{0.558atm}{0.25atm}\right)^{1.35-1/1.35} = \left(1 + \frac{1.35 - 1}{2}M_{9}^2\right) \Rightarrow M_9 := 1.15$ $T_{9t} := T_{9t} : \left(1 + \frac{\gamma - 1}{2}M_{9}^2\right)^{\frac{1}{2}} \Rightarrow T_9 := T_{9t} : / \left(1 + \frac{\gamma - 1}{2}M_{9}^2\right) = 296.0K / \left(1 + \frac{1.35 - 1}{2}1.15^2\right) = 240.4K$ (g) Specific thrust (ST) (recall FAR << 1 and P_9 = P_1 by assumption) $Thrust \approx \dot{m}_a [u_9 - u_1] + \dot{m}_a : [u_9 - u_1]; ST = \frac{Thrust}{(\dot{m}_a + \dot{m}_a)c_1} = \frac{\dot{m}_a [u_9 - u_1]}{(\dot{m}_a + \dot{m}_a)c_1} + \frac{\dot{m}_a : [u_9 - u_1]}{(\dot{m}_a + \dot{m}_a)$

Example - numerical (continued) (h) TSFC and overall efficiency Recalling that only $1/(1+\alpha)$ of the total air flow is burned, $TSFC = \frac{\dot{m}_{f}Q_{R}}{Thrust \cdot c_{1}} = \frac{\dot{m}_{\alpha}C_{P}(T_{4t} - T_{3t})}{Thrust \cdot c_{1}} = \left(\frac{\dot{m}_{a} + \dot{m}_{a}'}{Thrust}\right)^{c_{1}} - \frac{\dot{m}_{a}}{\dot{m}_{a} + \dot{m}_{a}'} \cdot \frac{C_{P}}{c_{1}^{2}}(T_{4t} - T_{3t}) = \frac{1}{ST} \frac{1}{1+\alpha} \frac{\gamma}{\gamma RT_{1}}(T_{4t} - T_{3t})$ $TSFC = \frac{1}{ST} \frac{1}{1+\alpha} \frac{T_{4t} - T_{3t}}{(\gamma - 1)T_{1}} = \frac{1}{0.552} \frac{1}{1+8} \frac{1800K - 643.6K}{(1.35 - 1)225K} = 2.96; \quad \eta_{a} = \frac{M_{1}}{TSFC} = \frac{0.8}{2.96} = 0.271$ note that compared to the ideal cycle, TSFC suffers slightly more (2.96 vs. 2.32 = 28%) increase) than ST (0.552 vs. 0.728 = 24%) decrease) (i) Propulsive efficiency $\eta_{p} = \frac{Thrust power}{\Delta(Kinetic energy)} = \frac{Thrust \cdot u_{1}}{\dot{m}_{a}(u_{9}^{2} - u_{1}^{2})/2 + \dot{m}_{a}'(u_{9}^{2} - u_{1}^{2})/2} = \frac{Thrust}{(M_{a}^{2} + \dot{m}_{a}')c_{1}} \cdot \frac{2(\dot{m}_{a} + \dot{m}_{a}')c_{1}u_{1}}{\dot{m}_{a}(u_{9}^{2} - u_{1}^{2}) + \dot{m}_{a}'(u_{9}^{2} - u_{1}^{2})/2} = ST \frac{2(1+\alpha)(\gamma RT_{1})M_{1}}{(M_{9}^{2}c_{9}^{2} - M_{1}^{2}c_{1}^{2}) + \alpha(M_{9}^{2}c_{9}^{2} - M_{1}^{2}c_{1}^{2})^{2}} = 0.552 \frac{(2)(1+8)(0.8)(225K)}{(1.448^{2}761.2K - 0.8^{2}225K) + 8(1.149^{2}240.4K - 0.8^{2}225K)}$ = 0.630AME 436 - Spring 2019 - Lecture 14 - Nonideal effects in propulsion cycles

