

Outline	USC Viterbi School of Engineering
 Turbojet analysis - assumptions and goals Process summary State-by-state analysis Results Thrust Efficiency Fuel consumption Effects of Compressor pressure ratio Flight Mach number τ_λ limit Sidebar topic: recuperation 	
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets an	d turbofans 2

Process	Name	Const.	M	Pt	Tt	Comments
$1 \rightarrow 2$	Diffuser	s	↓ to 0	$P_{2t} = P_{1t}$	$T_{2t} = T_{1t}$	Decelerate incoming gas to M = 0; no work
$2 \rightarrow 3$	Compression	S	0	$P_{3t}/P_{2t} = \pi_{c}$	$T_{3t}/T_{2t} = \pi_{c}^{(\gamma-1)/\gamma}$	Compressor work input = $C_P(T_{3t}-T_{2t})$
3→ 4	Combustion (main combustor)	Р	0	$P_{4t} = P_{3t}$	$T_{4t} = \tau_{\lambda} T_1$	Add heat to $\tau_{\lambda} = T_{4t}/T_1 - turbine inlet temperature limit$
4 → 5	Expansion through turbine (to pay for compressor work)	S	0	$P_{5t}/P_{4t} =$ $(T_{5t}/T_{4t})^{\gamma/(\gamma-1)}$	$T_{5t} = T_{4t} - (T_{3t} - T_{2t})$	Turbine work output = $C_P(T_{4t}-T_{5t}) =$ compressor work input = $C_P(T_{3t}-T_{2t})$
$5 \rightarrow 6$	Expansion through turbine (to pay for fan work)	S	0	$P_{6t}/P_{5t} = (T_{6t}/T_{5t})^{\gamma/(\gamma-1)}$	$T_{6t} = T_{5t} - (T_{3t,f} - T_{2t,f})$	Turbine work output = $C_P(T_{5t}-T_{6t}) = fan work$ input = $\alpha C_P(T_{3t}-T_{2t})$
6→7	Combustion (afterburner)	Р	0	$P_{7t} = P_{6t}$	$T_{7t} = \tau_{\lambda,AB}T_1$	Add heat to $\tau_{\lambda,AB} = T_{7t}/T_{\tau}$ - afterburner temperature limit
7 → 9	Expansion through nozzle	s	¢	$P_{9t} = P_{7t}$	$T_{9t} = T_{7t}$	P ₉ = P ₁

$$\frac{|\text{deal turbojet cycle - thermal efficiency}}{|\text{School of Engineering}} \qquad \text{USCViterbing}_{\text{School of Engineering}} \\
\text{Note } T_t - T = T \left(1 + \frac{\gamma - 1}{2} M^2 \right) - T = \frac{\gamma - 1}{2} M^2 T = \frac{\gamma - 1}{2} \frac{u^2}{c^2} T \\
= \frac{\gamma - 1}{\gamma RT} \frac{u^2}{2} T = \left(\frac{\gamma}{\gamma - 1} R \right)^{-1} \frac{u^2}{2} = \frac{1}{C_p} \frac{u^2}{2} \Rightarrow \text{KE per unit mass} = \frac{u^2}{2} = C_p \left(T_t - T \right); \text{ then} \\
\eta_{th} = \frac{\text{what you get}}{\text{what you pay for}} = \frac{\text{KE}_{out} - \text{KE}_{in}}{\text{heat in}} = \frac{u_g^2 / 2 - u_1^2 / 2}{C_p (T_{4t} - T_{3t})} \\
= \frac{C_p (T_{9t} - T_9) - C_p (T_{1t} - T_1)}{C_p (T_{4t} - T_{3t})} = \frac{T_1 \left[\tau_\lambda - \tau_r \left(\left(\pi_c \right)^{\gamma - 1} \gamma - 1 \right) \right] - T_1 \tau_\lambda / \tau_r \left(\pi_c \right)^{\gamma - 1} \gamma}{T_1 \tau_\lambda - T_1 \tau_r \left(\pi_c \right)^{\gamma - 1} \gamma} \\
= \frac{\tau_\lambda - \tau_r \left(\pi_c \right)^{\gamma - 1} \gamma}{\tau_\lambda - \tau_r \left(\pi_c \right)^{\gamma - 1} \gamma} = 1 - \frac{\tau_\lambda / \tau_r \left(\pi_c \right)^{\gamma - 1} \gamma}{\tau_\lambda - \tau_r \left(\pi_c \right)^{\gamma - 1} \gamma}} = 1 - \frac{1}{(\pi_r \pi_c)^{\gamma - 1} \gamma}} \\
\Rightarrow \frac{\eta_{th}}{\eta_{th}} = 1 - \frac{1}{(\pi_r \pi_c)^{\gamma - 1} \gamma}} = 1 - \frac{1}{(r)^{\gamma - 1} \gamma}}; r = \pi_r \pi_c; \pi_r = \text{"recovery pressure"} = \left(\tau_r \right)^{\gamma - 1} \gamma} \\
\text{AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans}$$

 $\begin{aligned} & \text{Ideal turbojet cycle - fuel consumption} & \text{USCVitebi}_{\text{Subold Engineering}} \\ & \text{Recall (Lecture 11) Thrust Specific Fuel Consumption (TSFC):} \\ & TSFC = \frac{\dot{m}_f}{Thrust} \frac{Q_R}{c_1} = \left(\frac{\dot{m}_a c_1}{Thrust}\right) \frac{FAR \cdot Q_R}{c_1^2} = \frac{1}{ST} \frac{FAR \cdot Q_R}{\gamma RT_1} \\ & \text{Fo compute TSFC is to compute FAR; energy balance on combustor (heat input = change in total enthalpy):} \\ & \dot{m}_f Q_R = (\dot{m}_a + \dot{m}_f) C_p T_{4t} - (\dot{m}_a) C_p T_{3t}; (FAR) Q_R = (1 + FAR) C_p T_{4t} - (1) C_p T_{3t} \\ & \text{but } FAR <<1, T_{4t} = T_1 \tau_{\lambda}, T_{3t} = T_1 \tau_r \left(\pi_c\right)^{\gamma - 1/\gamma} \Rightarrow \frac{(FAR)Q_R}{C_p T_1} = \tau_{\lambda} - \tau_r \left(\pi_c\right)^{\gamma - 1/\gamma} \\ & \Rightarrow TSFC = \frac{1}{ST} \frac{(FAR)Q_R}{\gamma RT_1} = \frac{1}{ST} \frac{(FAR)Q_R}{C_p T_1} \frac{C_p T_1}{\gamma RT_1} = \frac{1}{ST} \left(\tau_{\lambda} - \tau_r \left(\pi_c\right)^{\gamma - 1/\gamma}\right) \frac{\gamma}{\gamma RT_1} \frac{\gamma}{\gamma RT_1} \\ & \Rightarrow TSFC = \frac{1}{ST} \frac{1}{\gamma - 1} \left(\tau_{\lambda} - \tau_r \left(\pi_c\right)^{\gamma - 1/\gamma}\right); \eta_o = \frac{M_1}{TSFC} = \frac{(\gamma - 1)M_1ST}{\tau_{\lambda} - \tau_r \left(\pi_c\right)^{\gamma - 1/\gamma}} \\ & \text{Ideal turbojet; use ST from page 11} \\ & \text{AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans} \end{aligned}$

Recuperation - analysis $M = 0: T_{2} = T_{1}; T_{3} = T_{2}\pi_{c}^{\gamma-1/\gamma} = T_{1}R; T_{4} = \tau_{\lambda}T_{1}; T_{9} = T_{4} / R = \tau_{\lambda}T_{1} / R; R = \pi_{c}^{\gamma-1/\gamma}$ $\eta_{th} = \frac{\text{Net work}}{\text{Net heat input}} = \frac{C_{p}(T_{4} - T_{9}) - C_{p}(T_{3} - T_{2})}{C_{p}(T_{4} - T_{3}) - \varepsilon C_{p}(T_{9} - T_{3})}$ $\varepsilon = \text{Heat exchanger effectiveness} = \frac{\text{Actual heat transfer}}{\text{Maximum possible heat transger}}$ $\eta_{th} = \frac{(\tau_{\lambda}T_{1} - \tau_{\lambda}T_{1} / R) - (T_{1}R - T_{1}R)}{(\tau_{\lambda}T_{1} - T_{1}R) - \varepsilon(\tau_{\lambda}T_{1} / R - T_{1}R)} = \frac{(\tau_{\lambda} - R)(R - 1)}{\tau_{\lambda}(R - \varepsilon) - R^{2}(1 - \varepsilon)}; R = \pi_{c}^{\gamma-1/\gamma}$ Checks : $\varepsilon = 0$ (no recuperation), $\eta_{th} = 1 - 1/R = 1 - 1/r^{\gamma-1/\gamma}$ (standard Brayton cycle) $\varepsilon = 1, R \rightarrow 1$ (perfect recuperation, no T rise due to compression): $\eta_{th} \rightarrow 1 - 1/\tau_{\lambda} = 1 - 1/(T_{4} / T_{1}) = 1 - (T_{1} / T_{4})$ (Same as Carnot since heat addition only at T = T_{4} and heat rejection only at T = T_{1}) $R \rightarrow 1$ (no compression): $\eta_{th} \rightarrow 0$ (unless $\varepsilon = 1$) AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans

Turbofan USC Viterbi
 > Turbojets and afterburning turbojets 'suffer' from large exhaust velocity u₉ - provides large thrust per unit mass flow (thus large specific thrust, ST) but poor propulsive efficiency, thus poor TSFC and overall efficiency > Lecture 11: what you really want to do is accelerate ∞ mass of air by 1/∞ amount, thus u₉ = u₁(1 + 1/∞), thus propulsive efficiency → 1 > How to improve propulsive efficiency? Turbofan > Extract more power from turbine than needed to drive compressor > Use extra power to drive "fan" that accelerates large mass of air by 1/large amount > No free lunch, combusted stream produces less thrust
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans 42

Turbofan - analysis
So why doesn't everyone use a fan? (They do now)
But fan is large, so specific thrust is low if you include ALL air flow
Analysis of turbofan same as non-afterburning up to state 5 (after
turbine for compressor work); from page 9:

$$M_5 = 0; \ q_{4\rightarrow 5} = 0; \ w_{4\rightarrow 5} = C_P(T_{4t} - T_{5t}) = -C_P(T_{2t} - T_{3t})$$

 $T_5 = T_{5t} = T_{4t} + (T_{2t} - T_{3t}) = T_1\tau_{\lambda} + T_1\tau_r - T_1\tau_r(\pi_c)^{\gamma-1/\gamma} = T_1\left[\tau_{\lambda} - \tau_r\left((\pi_c)^{\gamma-1/\gamma} - 1\right)\right]$
 $P_5 = P_{5t} = P_{4t}(T_{5t}/T_{4t})^{\gamma/\gamma-1} = P_1(\tau_r)^{\gamma/\gamma-1}\pi_c\left[1 - (\tau_r/\tau_{\lambda})\left((\pi_c)^{\gamma-1/\gamma} - 1\right)\right]^{\gamma/\gamma-1}$
Fan: use prime (') superscript for (non-combusting) fan stream:
 $M_2' = 0; \ T_2' = T_1\tau_r; \ T_{2t}' = T_{1t}' = T_1\tau_r; P_2' = P_1(\tau_r)^{\gamma/\gamma-1}; \ q_{1\rightarrow 2} = w_{1\rightarrow 2} = 0$
 $M_3' = 0; \ T_3' = T_{2t}'(\pi_c')^{\gamma'-1/\gamma} = T_1\tau_r(\pi_c')^{\gamma'-1/\gamma};$
 $P_3' = P_{3t}' = P_{2t}'\pi_c' = P_1(\tau_r)^{\gamma/\gamma-1}\pi_c'$
 $q_{2\rightarrow 3} = 0; \ w_{2\rightarrow 3} = C_P(T_{2t}' - T_{3t}')$
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans

Turbofan - analysisUse Viterbi
School of Engineering> Need to complete energy balance on the main stream (fan work
= fan turbine work) to determine properties after fan turbine
$$5 \rightarrow 6$$
> Define Bypass Ratio (α) = ratio of mass flow through fan to mass
flow through compressor ($\alpha = m_a / m_a$)
 $M_6 = 0$; $q_{5 \rightarrow 6} = 0$; $w_{5 \rightarrow 6} = m_a C_p (T_{5t} - T_{6t}) = -m_a ' C_p (T_{2t} ' - T_{3t}')$
 $\Rightarrow T_{6t} = T_{5t} - \alpha (T_{3t} ' - T_{2t}') = T_1 \left[\tau_{\lambda} - \tau_r \left((\pi_c)^{\gamma^{-1}/\gamma} - 1 \right) \right] - \alpha (T_{3t} ' - T_{2t}')$
 $T_{6t} = T_6 = T_1 \left[\tau_{\lambda} - \tau_r \left((\pi_c)^{\gamma^{-1}/\gamma} - 1 \right) \right] - \alpha \left[T_1 \tau_r (\pi_c')^{\gamma^{-1}/\gamma} - T_1 \tau_r \right]$
 $P_{6t} = P_6 = P_{5t} (T_{6t} / T_{5t})^{\gamma'_{t-1}}$
 $= P_1 (\tau_r)^{\gamma'_{t-1}} \pi_c \left[1 - (\tau_r / \tau_{\lambda}) \left((\pi_c)^{\gamma^{-1}/\gamma} - 1 \right) \right] - \alpha \left[(\tau_r / \tau_{\lambda}) \left((\pi_c)^{\gamma^{-1}/\gamma} - 1 \right) \right] - \alpha \left[(\tau_r / \tau_{\lambda}) \left((\pi_c)^{\gamma^{-1}/\gamma} - 1 \right) \right] - \alpha \left[T_1 \tau_r (\pi_c)^{\gamma^{-1}/\gamma} - 1 \right] \right]^{\gamma'_{r-1}}$
 $= P_1 (\tau_r)^{\gamma'_{r-1}} \pi_c \left\{ \left[1 - (\tau_r / \tau_{\lambda}) \left((\pi_c)^{\gamma^{-1}/\gamma} - 1 \right) \right] - \alpha \left[(\tau_r / \tau_{\lambda}) \left((\pi_c)^{\gamma^{-1}/\gamma} - 1 \right) \right] - \alpha \left[T_1 \tau_r (\pi_c)^{\gamma^{-1}/\gamma} - 1 \right] \right\}^{\gamma'_{r-1}}$
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans

Turbofan - analysis - ThrustUSCVitebi
Motor of Engineering> Then finally compute the Thrust (assuming P9 = P1, FAR << 1)Thrust =
$$\dot{m}_a [(1 + FAR)u_9 - u_1] + (P_9 - P_1)A_9 + \dot{m}_a'[u_9' - u_1]$$
 $\approx \dot{m}_a [u_9 - u_1] + \dot{m}_a'[u_9' - u_1]$ $\approx \dot{m}_a [u_9 - u_1] + \dot{m}_a'[u_9' - u_1]$ $ST = \frac{Thrust}{(\dot{m}_a + \dot{m}_a')c_1} = \frac{\dot{m}_a [u_9 - u_1]}{(\dot{m}_a + \dot{m}_a')c_1} + \frac{\dot{m}_a' [u_9 - u_1]}{(\dot{m}_a + \dot{m}_a')c_1}$ $= \frac{1}{1 + \alpha} \left\{ \left[M_9 \sqrt{\frac{T_9}{T_1}} - M_1 \right] + \alpha \left[M_9' \sqrt{\frac{T_9'}{T_1}} - M_1 \right] \right\}$ $= \frac{1}{1 + \alpha} \left\{ \left[M_9 \sqrt{\frac{T_9}{T_1}} - M_1 \right] + \alpha \left[\sqrt{\frac{2}{\gamma - 1} \left(\tau_r (\pi_c')^{\gamma - 1/\gamma} - 1 \right) \sqrt{\frac{T_1}{T_1}} - M_1 \right] \right\}$ $ST = \frac{1}{1 + \alpha} \left\{ M_9 \sqrt{\frac{\tau_a}{\tau_r (\pi_c)^{\gamma' - 1/\gamma}}} + \alpha \sqrt{\frac{2}{\gamma - 1} \left(\tau_r (\pi_c')^{\gamma' - 1/\gamma} - 1 \right)} \right\} - M_1$ where M9 (for main stream) is given on the previous pageAME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans

 Now 3 parameters: α, π_c, π_c'; not just π_c as with the turbojet TSFC calculation is almost same as with turbojet, since same amount of fuel is used, but thrust is different of course: TSFC = m_fQ_R/Thrust·c₁ = m_a/m_a (m_a + m_a')c₁·FAR·Q_R/Thrust·c₁² = 1/(1 + α) (Thrust/(m_a + m_a')c₁)⁻¹ C_P(T_{4t} - T_{3t})/(γRT₁) = 1/(1 + α) (τ₁ + α) (τ₂ - τ_r(π_c)^{r-1/γ}) "It can be shown" (with A LOT of algebra) that a value of α minimizes TSFC or maximumizes η_{overall} = M₁/TSFC ∂(η_{overall})/∂(α) = 0 ⇒ 2(u₉ - u₁) = (u₉' - u₁) At this optimum, thrust per unit mass of the main stream (u₉ - u₁) is half that of the fan stream (u₉' - u₁), i.e., the main stream is bled almost completely out of KE to feed the greedy fan (by drawing more power out of the turbine) 	Turbofan - analysis - TSFC	USC Viterbi School of Engineering
$TSFC = \frac{\dot{m}_{f}Q_{R}}{Thrust \cdot c_{1}} = \frac{\dot{m}_{a}}{\dot{m}_{a} + \dot{m}_{a}} \cdot \frac{(\dot{m}_{a} + \dot{m}_{a}')c_{1} \cdot FAR \cdot Q_{R}}{Thrust \cdot c_{1}^{2}}$ $= \frac{1}{1 + \alpha} \left(\frac{Thrust}{(\dot{m}_{a} + \dot{m}_{a}')c_{1}} \right)^{-1} \frac{C_{P}(T_{4t} - T_{3t})}{\gamma R T_{1}} = \frac{1}{1 + \alpha} \frac{1}{\gamma - 1} \frac{1}{ST} \left(\tau_{\lambda} - \tau_{r} \left(\pi_{c} \right)^{\gamma - 1/\gamma} \right)$ $\Rightarrow \text{ "It can be shown" (with A LOT of algebra) that a value of } \alpha$ minimizes TSFC or maximumizes $\eta_{\text{overall}} = M_{1}/\text{TSFC}$ $\frac{\partial(\eta_{\text{overall}})}{\partial(\alpha)} = 0 \Rightarrow 2(u_{9} - u_{1}) = (u_{9}' - u_{1})$ At this optimum, thrust per unit mass of the main stream (u_{9} - u_{1}) is half that of the fan stream (u_{9}' - u_{1}), i.e., the main stream is bled almost completely out of KE to feed the greedy fan (by drawing more power out of the turbine)	 Now 3 parameters: α, π_c, π_c'; not just π_c as with the TSFC calculation is almost same as with turbojet, s amount of fuel is used, but thrust is different of course 	e turbojet since same ırse:
$= \frac{1}{1+\alpha} \left(\frac{Thrust}{(\dot{m}_a + \dot{m}_a')c_1} \right)^{-1} \frac{C_p(T_{4t} - T_{3t})}{\gamma R T_1} = \frac{1}{1+\alpha} \frac{1}{\gamma - 1} \frac{1}{ST} \left(\tau_\lambda - \tau_r \left(\pi_c \right)^{\gamma - 1/\gamma} \right)$ $\Rightarrow \text{ "It can be shown" (with A LOT of algebra) that a value of } \alpha$ minimizes TSFC or maximumizes $\eta_{\text{overall}} = M_1/\text{TSFC}$ $\frac{\partial(\eta_{\text{overall}})}{\partial(\alpha)} = 0 \Rightarrow 2(u_9 - u_1) = (u_9' - u_1)$ At this optimum, thrust per unit mass of the main stream (u_9 - u_1) is half that of the fan stream (u_9' - u_1), i.e., the main stream is bled almost completely out of KE to feed the greedy fan (by drawing more power out of the turbine)	$TSFC = \frac{\dot{m}_f Q_R}{Thrust \cdot c_1} = \frac{\dot{m}_a}{\dot{m}_a + \dot{m}_a'} \frac{(\dot{m}_a + \dot{m}_a')c_1 \cdot FAR \cdot Q_R}{Thrust \cdot c_1^2}$	
Solution in the shown is the shown is the function of th	$=\frac{1}{1+\alpha}\left(\frac{Thrust}{(\dot{m}_{a}+\dot{m}_{a}')c_{1}}\right)^{-1}\frac{C_{p}(T_{4t}-T_{3t})}{\gamma RT_{1}}=\frac{1}{1+\alpha}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{2}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{\gamma-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\lambda}-\tau_{r}\left(\pi\right)^{2}\right)^{-1}\frac{1}{ST}\left(\tau_{\tau$	$\left(T_{c} \right)^{\gamma-1/\gamma} $
$\frac{\partial(\eta_{overall})}{\partial(\alpha)} = 0 \Rightarrow 2(u_9 - u_1) = (u_9' - u_1)$ At this optimum, thrust per unit mass of the main stream (u_9 - u_1) is half that of the fan stream (u_9' - u_1), i.e., the main stream is bled almost completely out of KE to feed the greedy fan (by drawing more power out of the turbine)	 "It can be shown" (with A LOT of algebra) that a vaminimizes TSFC or maximumizes η_{overall} = M₁/TSF 	llue of α
At this optimum, thrust per unit mass of the main stream $(u_9 - u_1)$ is half that of the fan stream $(u_9' - u_1)$, i.e., the main stream is bled almost completely out of KE to feed the greedy fan (by drawing more power out of the turbine)	$\frac{\partial (\eta_{overall})}{\partial (\alpha)} = 0 \Longrightarrow 2(u_9 - u_1) = (u_9' - u_1)$	
drawing more power out of the turbine)	At this optimum, thrust per unit mass of the main s is half that of the fan stream $(u_9' - u_1)$, i.e., the main bled almost completely out of KE to feed the greed	tream (u ₉ - u ₁) n stream is ly fan (by
	drawing more power out of the turbine) AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and	turbofans 50

Example - numerical (continued) USC Viterbi
(e) T, P and M after the nozzle (station 9, and 9' for the fan stream) (note that for the fan stream, nothing happens between stations 3 and 6)
$P_9 = 0.25atm \text{ by assumption; } \frac{P_{9t}}{P_9} = \left(1 + \frac{\gamma - 1}{2}M_9^2\right)^{\frac{\gamma}{\gamma - 1}} \Rightarrow \left(\frac{1.789atm}{0.25atm}\right)^{1.35 - \frac{\gamma}{1.35}} = \left(1 + \frac{1.35 - 1}{2}M_9^2\right) \Rightarrow M_9 = 1.95$
$T_{g_t} = T_{g_t} = T_g \left(1 + \frac{\gamma - 1}{2} M_g^2 \right) \Longrightarrow T_g = T_{g_t} / \left(1 + \frac{\gamma - 1}{2} M_g^2 \right) = 1116.3K / \left(1 + \frac{1.35 - 1}{2} 1.95^2 \right) = 670.2K$
$P_9' = 0.25atm \text{ by assumption; } \frac{P_{9'}}{P_9'} = \left(1 + \frac{\gamma - 1}{2}M_9^2\right)^{\gamma_{\gamma-1}} \Rightarrow \left(\frac{0.678atm}{0.25atm}\right)^{1.35 - \gamma_{1.35}} = \left(1 + \frac{1.35 - 1}{2}M_{9}'^2\right) \Rightarrow M_9' = 1.3026m^2$
$T_{g_{t}}' = T_{6t}' = T_{9}' \left(1 + \frac{\gamma - 1}{2} M_{9}'^{2} \right) \Rightarrow T_{9}' = T_{g_{t}} \left/ \left(1 + \frac{\gamma - 1}{2} M_{9}'^{2} \right) = 291.4 K \left/ \left(1 + \frac{1.35 - 1}{2} 1.30^{2} \right) = 225 K$
(f) Specific thrust (ST) (recall FAR ≤ 1 and $P_9 = P_1$ by assumption)
$Thrust \approx \dot{m}_{a} \left[u_{9} - u_{1} \right] + \dot{m}_{a} \left[u_{9} - u_{1} \right]; ST = \frac{Thrust}{(\dot{m}_{a} + \dot{m}_{a})c_{1}} = \frac{\dot{m}_{a} \left[u_{9} - u_{1} \right]}{(\dot{m}_{a} + \dot{m}_{a})c_{1}} + \frac{\dot{m}_{a} \left[u_{9} - u_{1} \right]}{(\dot{m}_{a} + \dot{m}_{a})c_{1}}$
$ST = \frac{1}{1+\alpha} \left\{ \left[M_9 \sqrt{T_9 / T_1} - M_1 \right] + \alpha \left[M_9 ' \sqrt{T_9 ' / T_1} - M_1 \right] \right\}$
$ST = \frac{1}{1+8} \left\{ \left[1.95\sqrt{670.2/225} - 0.8 \right] + 8 \left[1.30\sqrt{225K/225K} - 0.8 \right] \right\} = 0.728$
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans 61

Example - numerical (continued)	erbi
(g) TSFC and overall efficiency	
Recalling that only $1/(1+\alpha)$ of the total air flow is burned,	
$TSFC = \frac{\dot{m}_{f}Q_{R}}{Thrust \cdot c_{1}} = \frac{\dot{m}_{a}C_{P}(T_{4t} - T_{3t})}{Thrust \cdot c_{1}} = \frac{\left(\dot{m}_{a} + \dot{m}_{a}\right)c_{1}}{Thrust} \frac{\dot{m}_{a}}{\dot{m}_{a} + \dot{m}_{a}}, \frac{C_{P}}{c_{1}^{2}}(T_{4t} - T_{3t}) = \frac{1}{ST}\frac{1}{1 + \alpha}\frac{\gamma}{\gamma RT_{1}}(T_{4t} - T_{3t}) = \frac{1}{ST}\frac{1}{1 + \alpha}\frac{\gamma}{\gamma}\frac{\gamma}{RT_{1}}(T_{4t} - T_{3t}) = \frac{1}{ST}\frac{1}{1 + \alpha}\frac{\gamma}{RT_{1}}(T_{4t} - T_{3t}) = \frac{1}{ST}\frac{1}{1 + \alpha$	(T_{3_l})
(h) Propulsive efficiency	
$\eta_p = \frac{\text{Thrust power}}{\Delta(\text{Kinetic energy})} = \frac{\text{Thrust} \cdot u_1}{\dot{m}_a \left(u_9^2 - u_1^2\right)/2 + \dot{m}_a \left(u_9^2 - u_1^2\right)/2} = \frac{\text{Thrust}}{(\dot{m}_a + \dot{m}_a)c_1} \cdot \frac{2(\dot{m}_a + \dot{m}_a)c_1u_1}{\dot{m}_a \left(u_9^2 - u_1^2\right) + \dot{m}_a \left(u_9^2 - u_1^2\right)/2} = \frac{1}{(\dot{m}_a + \dot{m}_a)c_1} \cdot \frac{1}{(\dot{m}_a + \dot{m}_a)c_1}$	$\overline{u_1'^2}$
$\eta_{n} = ST \frac{2(1+\alpha)c_{1}^{2}M_{1}}{(1+\alpha)c_{1}^{2}M_{1}} = ST \frac{2(1+\alpha)(\gamma RT_{1})M_{1}}{(1+\alpha)(\gamma RT_{1})M_{1}}$	
$(M_{9}^{2}c_{9}^{2} - M_{1}^{2}c_{1}^{2}) + \alpha (M_{9}^{\prime 2}c_{9}^{\prime 2} - M_{1}^{\prime 2}c_{1}^{\prime 2}) \qquad (M_{9}^{2}(\gamma RT_{9}) - M_{1}^{2}(\gamma RT_{1})) + \alpha (M_{e}^{\prime 2}(\gamma RT_{9}) - M_{1}^{2}(\gamma RT_{9})) + \alpha (M_{e}^{\prime 2}(\gamma RT_{9})) + \alpha (M_{e}^{\prime 2}(\gamma RT_{9}) - M_{1}^{2}(\gamma RT_{9})) + \alpha (M_{e}^{\prime 2}(\gamma RT_{9})) $	$M_1^2(\gamma RT_1))$
$= ST \frac{2(1+\alpha)M_1T_1}{(M_9^2T_9 - M_1^2T_1) + \alpha(M_9^{12}T_9 - M_1^2T_1)} = 0.728 \frac{(2)(1+8)(0.8)(225)}{(1.95^2670.2K - 0.8^2225K) + 8(1.30^2225K - 0.8^2225K) + 8(1.30^2225K) + 8(1.30^224K) + 8(1.30^224K) + 8(1.30^24K) + 8$	25K
= 0.549	
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets and turbofans	62

Summary	USC Viterbi School of Engineering
 Turbojet Ideal cycle - compress isentropically, burn isobarical expand isentropically back to ambient pressure Matching conditions: compressor work = turbine wor P_{exit} = P_{ambient}) Performance is determined by compressor pressure inlet temperature limit (τ_λ) and flight Mach number (N Low π_c: thermal efficiency low, thrust low High π_c: thermal efficiency high but not much fuel can I limit reached so again thrust low (also propulsive efficion of high exit M) Intermediate π_c: thermal efficiency intermediate, thrust Increasing τ_λ always increases thrust but propulsive efficiency intermediate, thrust 	lly (constant P), $rk & P_1 = P_9$ (i.e. ratio $π_c$, turbine M_1) be added before $τ_λ$ ency low because highest ficiency suffers mpression) and
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets an	id turbofans 66

Summary - continued	
> Afterburner	
Obtain more thrust by adding additional fuel afte	r the turbine
> This is possible since τ_{λ} is too low for stoichiome	etric combustion,
thus exhaust of standard turbojet has unburned	O ₂
> Additional parameter $\tau_{\lambda,AB}$	
Since there are no moving parts in the afterburn	er temperature
limitations are not as severe, thus $\tau_{\lambda,AB} > \tau_{\lambda}$ and	substantial
additional fuel can be added	
I-s Carnot cycle strips are shorter for afterburning three the area of affering social area of the medicated	ng part of cycle,
thus thermal efficiency is greatly reduced	
Used to increase propulsive efficiency by accele	rating large mass
of all by a smaller Δu (no effect on thermal efficiency).	ency)
Additional parameters α , π '	
Fan work is "paid for" with additional turbine sta	aes - lower 110 for
main stream	
 Combined thrust maximized when most of thrust 	t is obtained from
fan stream	
AME 436 - Spring 2019 - Lecture 13 - Ideal turbojets	and turbofans 67