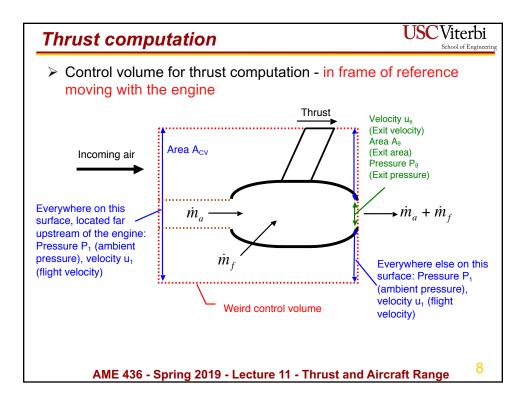
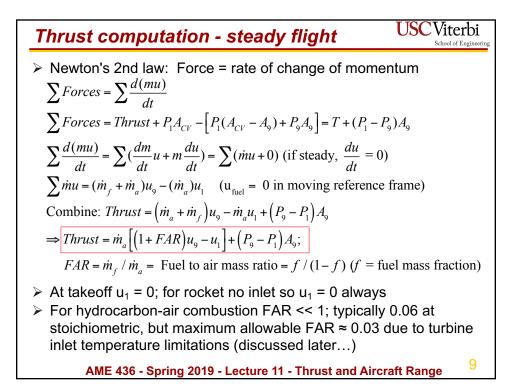
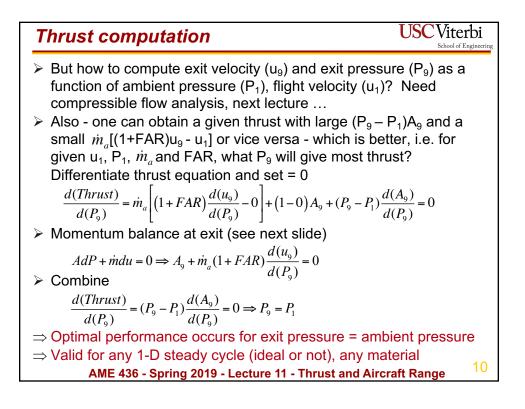
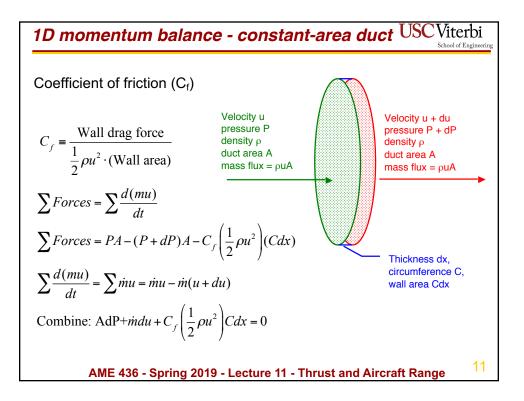
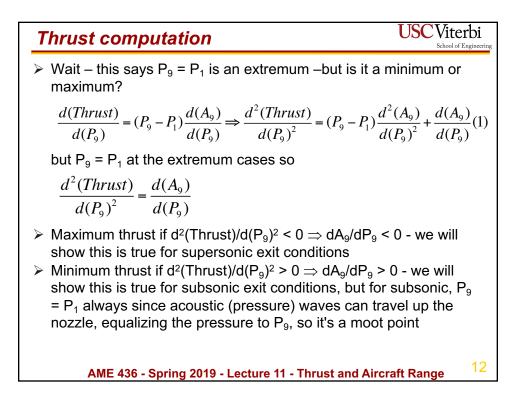

Outline	USC Viterbi School of Engineering
 Why gas turbines? Computation of thrust Propulsive, thermal and overall efficiency Specific thrust, thrust specific fuel consumption, specific fuel range equation 	ecific impulse
AME 436 - Spring 2019 - Lecture 11 - Thrust and Airc	raft Range ²

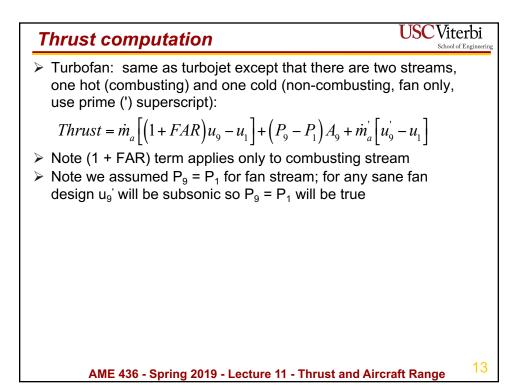


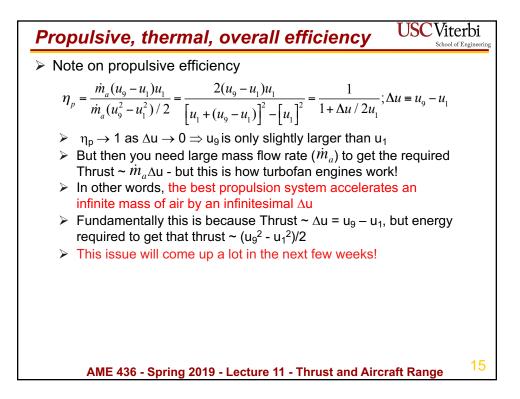


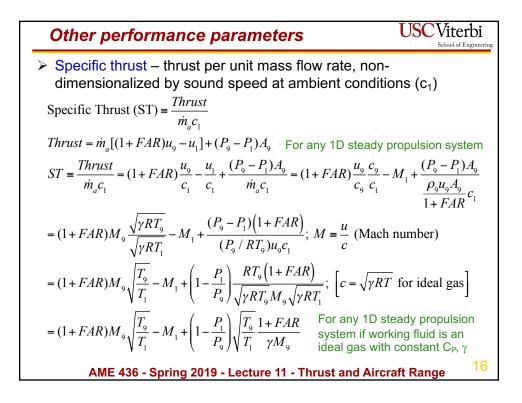


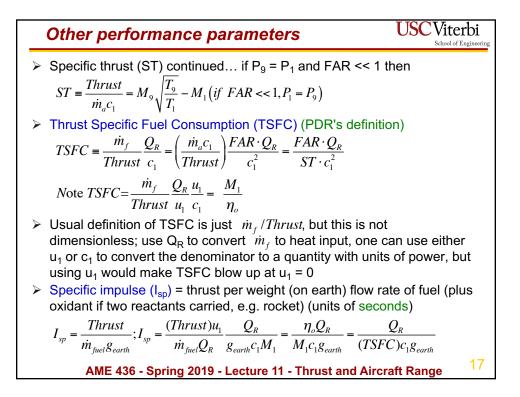

Why gas turbines?	USC Viterbi School of Engineering
> Disadvantages	
Compressor is a dynamic device that pushes gas from to high P without positive sealing like piston/cylinder	low pressure (P)
 » Requires very precise aerodynamics » Requires blade speeds ≈ sound speed, otherwise gas flo faster than compressor can push it to high P 	ows back to low P
 Each stage can provide only 2:1 or 3:1 pressure ratio - no for large pressure ratio 	eed many stages
Since steady flow, each component sees a constant te turbine stays hot continuously and must rotate at high s stress)	•
 » Severe materials and cooling engineering required (unlik engine where components feel only average gas temperative » Turbine inlet temperature limit typically 1400°C - limits fue 	ature during cycle)
As a result, turbines require more maintenance & are n for same power	
AME 436 - Spring 2019 - Lecture 11 - Thrust and Airc	raft Range ⁶

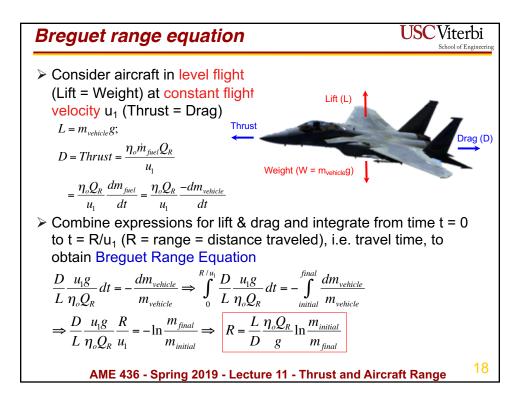


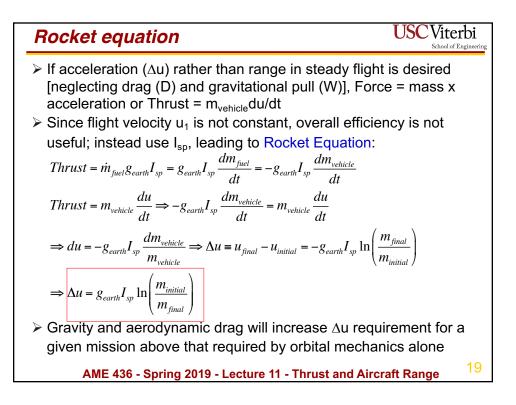


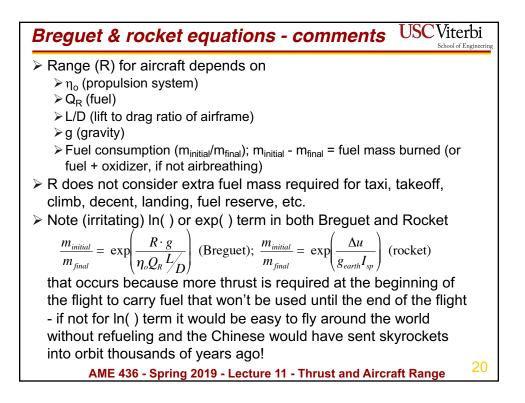









Propulsive, thermal, overall efficiency USC	Viterbi School of Engineering
> Thermal efficiency (η_{th})	
$\eta_{th} = \frac{\Delta(\text{Kinetic energy})}{\text{Heat input}} = \frac{(\dot{m}_a + \dot{m}_f)u_9^2 / 2 - (\dot{m}_a)u_1^2 / 2}{\dot{m}_f Q_R}$	
If $\dot{m}_f \ll \dot{m}_a$ (FAR << 1) then $\eta_{th} \approx \frac{(u_9^2 - u_1^2)/2}{FAR \cdot Q_R}$ > Propulsive efficiency (η_p)	
$\eta_p = \frac{\text{Thrust power}}{\Delta(\text{Kinetic energy})} = \frac{\text{Thrust} \cdot u_1}{(\dot{m}_a + \dot{m}_f)u_9^2 / 2 - (\dot{m}_a)u_1^2 / 2}$	
If $\dot{m}_f << \dot{m}_a \ (FAR << 1)$ and $P_9 = P_1$ then $\eta_p \approx \frac{\dot{m}_a (u_9 - u_1) \cdot u_1}{\dot{m}_a (u_9^2 - u_1^2) / 2} = \frac{2u_1 / 2}{1 + u_1}$	$\frac{u_9}{u_9}$
> Overall efficiency (η_o)	,
$\eta_o = \frac{\text{Thrust power}}{\text{Heat input}} = \frac{\text{Thrust power}}{\Delta(\text{Kinetic energy})} \frac{\Delta(\text{Kinetic energy})}{\text{Heat input}} = \eta_{th}\eta_p$	
this is the most important efficiency in determining aircraft performance (see Breguet range equation, coming up)	
AME 436 - Spring 2019 - Lecture 11 - Thrust and Aircraft Rang	je ¹⁴



USC Viterbi

What initial to final mass ratio is needed to fly around the world without refueling? Assume distance traveled (R) = 40,000 km, g = 9.8 m/s²; hydrocarbon fuel (Q_R = 4.3 x 10^7 J/kg); good propulsion system ($\eta_o = 0.25$), good airframe (L/D = 25),

$$\frac{m_{initial}}{m_{final}} = \exp\left(\frac{R \cdot g}{\eta_o Q_R L/D}\right) = \exp\left(\frac{(40 \times 10^6 m)(9.81m/s^2)}{(0.25)(4.3 \times 10^7 J/kg)(25)}\right) = 4.31$$

Examples

So the aircraft takeoff mass has to be mostly fuel, i.e. $m_{fuel}/m_{initial} = (m_{initial} - m_{final})/m_{initial} = 1 - m_{final}/m_{initial} = 1 - 1/4.31 = 0.768! - that's why no one flew around with world without refueling until 1986 (solo flight 2005)$

What initial to final mass ratio is needed to get into orbit from the earth's surface with a single-stage rocket propulsion system?

For this mission $\Delta u = 8000$ m/s; using a good rocket propulsion system (e.g. Space Shuttle main engines, $I_{SP} \approx 400$ sec

$$\frac{m_{initial}}{m_{final}} = \exp\left(\frac{\Delta u}{g_{earth}I_{sp}}\right) = \exp\left(\frac{(8000\,m/s)}{(9.81m/s^2)(400s)}\right) = 7.68$$

It's practically impossible to obtain this large a mass ratio in a single stage, thus *staging* is needed where you jettison larger, heavier stages as fuel mass is consumed – that's why no one put an object into earth orbit until 1957, and no one has <u>ever</u> built a *single stage to orbit* vehicle.

AME 436 - Spring 2019 - Lecture 11 - Thrust and Aircraft Range

Summary USC Vite	erbi of Engincering
Steady flow (e.g. gas turbine) engines have much higher power to-weight ratios than unsteady flow (e.g. reciprocating piston) engines	r-
 A simple momentum balance on a steady-flow propulsion syste shows that the best performance is obtained when Exit pressure = ambient pressure 	em
 > A large mass of gas is accelerated by a small ∆u > Two types of efficiencies for propulsion systems - thermal efficiency and propulsive efficiency (product of the two = overal 	I
 efficiency, which is the most important figure of merit) ➢ Definitions - specific thrust, thrust specific fuel consumption, specific impulse 	
Range of an aircraft depends critically on overall efficiency - effect more severe than in ground vehicles, because aircraft must generate enough lift (thus thrust, thus required fuel flow) t carry entire fuel load at first part of flight	:0
AME 436 - Spring 2019 - Lecture 11 - Thrust and Aircraft Range	22