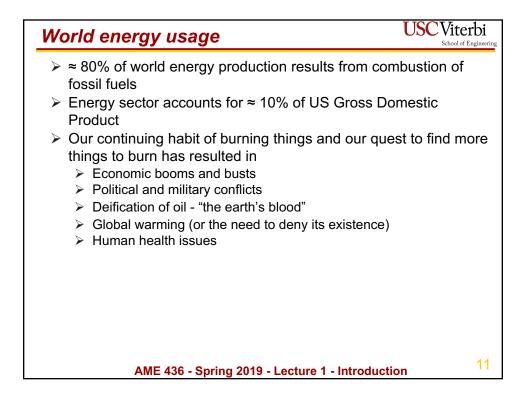


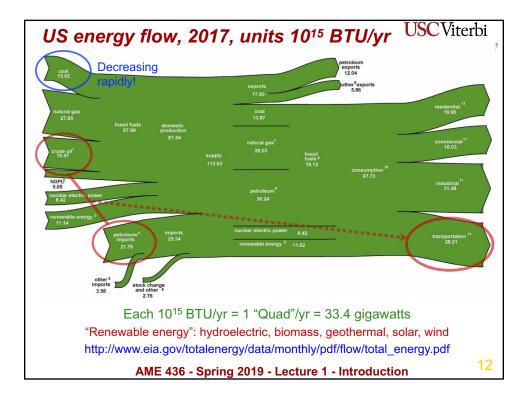
Helpful handy hints	USC Viterbi School of Engineering
Download lectures from website before class	
 Each lecture includes Outline 	
 Beef 	
 Examples 	
Summary	
so make use of these resources!	
Bringing your laptop or tablet allows you to add no	tes & download
files from course website as necessary	
You'll need hard copies for exams since no compu- will be allowed	iters or tablets
Download and install Microsoft Office to view the le and open the embedded Excel spreadsheets - US license	
Ask questions in class - the goal of the lecture is to way "Socratic" dialogue on the subject of the lecture	
AME 436 - Spring 2019 - Lecture 1 - Introducti	ion 2

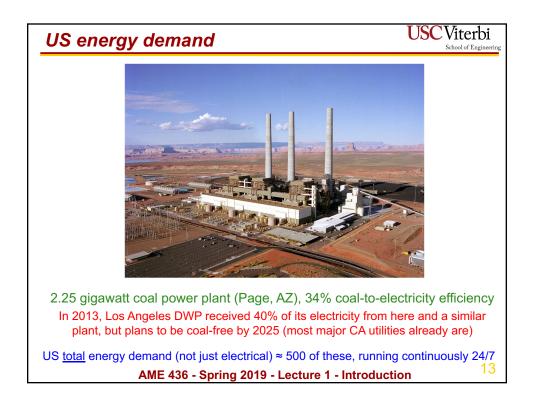
Symbol	Meaning (units)
A	Cross-section area (m ²)
A*	Throat area (m ²)
Ae	Exit area (m²)
ATDC	After Top Dead Center
В	Transfer number for droplet burning ()
BMEP	Brake Mean Effective Pressure (N/m ²)
BSFC	Brake Specific Fuel Consumption (kg/W)
BSNO _x	Brake Specific NO _x (g/kW-hr or kg/J) (similar definition with CO, UHC emissions)
BTDC	Before Top Dead Center
с	Sound speed (m/s)
С	Duct circumference (m)
CD	Drag coefficient ()
Cf	Friction coefficient ()
СО	Carbon monoxide (compound having 1 carbon and 1 oxygen atom)
СМ	Control Mass
CP	Heat capacity at constant pressure (J/kgK)
C _v	Heat capacity at constant volume (J/kgK)
CV	Control Volume
D	Mass diffusivity (m²/s)
D	Drag force (N)
DORF	Degree Of Reaction Freedom
E	Energy contained by a substance = $U + KE + PE (J)$
E	Activation Energy (J/mole)

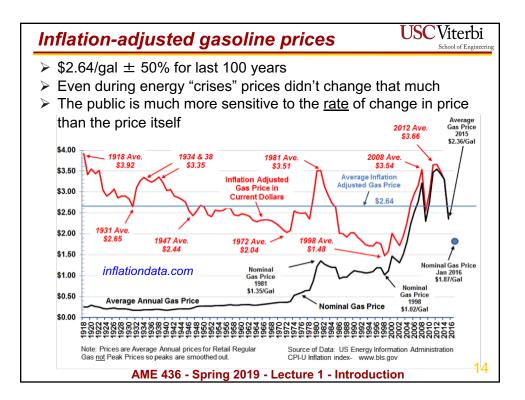
Symbol	Meaning (units)
f	Fuel mass fraction in mixture ()
FAR	Fuel to air mass ratio ()
FMEP	Friction Mean Effective Pressure (N/m ²)
g	Acceleration of gravity (m/s ²)
g	Gibbs function \equiv h - Ts (J/kg)
H	Enthalpy = U + PV (J)
h	Enthalpy per unit mass = u + Pv (J/kg)
h	Heat transfer coefficient (usually W/m ² K, dimensionless in AirCycles.xls files)
h $ ilde{h}_i$	Enthalpy of chemical species i per mole = $[\tilde{h}(T) - \tilde{h}_{298}]_i + \Delta \tilde{h}_{f,i}^o$ (J/mole)
$[\dot{\tilde{h}}(T) - \tilde{h}_{298}]_i$	Thermal enthalpy of chemical species i per mole (J/mole)
ICE	Internal Combustion Engine
IMEP	Indicated Mean Effective Pressure (N/m ²)
ISFC	Indicated Specific Fuel Consumption (kg/W)
I _{SP}	Specific impulse (sec)
K _i	Equlibrium constant of chemical species i ()
k	Thermal conductivity (W/mK)
k	Reaction rate constant ([moles/m ³] ¹⁻ⁿ /sec) (n = order of reaction)
к	Droplet burning rate constant (m ² /s)
Ka	Karlovitz number (= 0.157 ReL ^{-1/2} (u'/SL) ² for premixed flames in turbulent flows)
KE	Kinetic energy (J or J/kg)
L	Lift force (N)
L _f	Jet flame length (m)
L	Integral length scale of turbulence (m)
LOMA	Law Of Mass Action

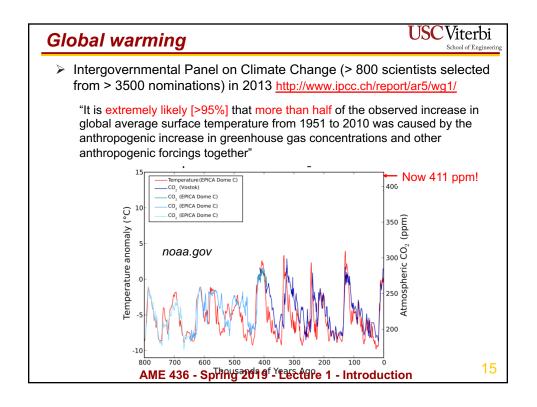
Meaning (units)
Molecular weight of chemical species i (kg/mole)
Mach number ()
mass (kg)
Mass flow rate (kg/sec)
Air mass flow rate (kg/s)
Fuel mass flow rate (kg/s)
Mean Effective Pressure (N/m ²)
Order of reaction ()
Parameter in MEP definition (= 1 for 2-stroke engine, = 2 for 4-stroke)
Number of moles of chemical species I
Number of chemical species in a mixture
Engine rotational speed (revolutions per minute)
Nitric oxide (compound having 1 nitrogen atom and 1 oxygen atom)
Oxides of Nitrogen (any compound having nitrogen and oxygen atoms)
Ozone
Pressure (N/m ²)
Ambient pressure (N/m ²)
Exit pressure (N/m ²)
Reference pressure (101325 N/m ²)
Stagnation pressure (N/m ²)
Potential Energy (J or J/kg)
Pumping Mean Effective Pressure (N/m ²)
Heat transfer (J or J/kg)
Heat transfer rate (Watts or Watts/kg)
Fuel heating value (J/kg)

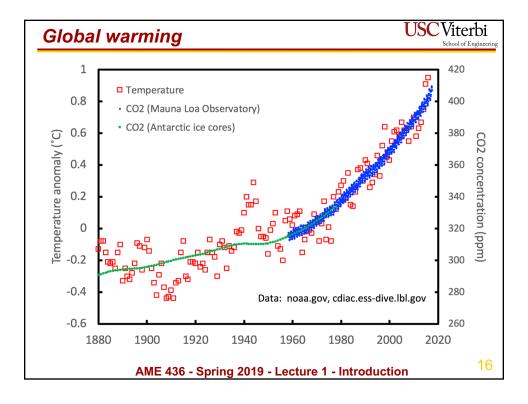

Symbol	Meaning (units)	
R	Gas constant = R/M (J/kgK)	
R	Flight vehicle range (m)	
r or r _c	Compression ratio = $(V_c+V_d)/V_c$ ()	
r _e	Expansion ratio ()	
Re∟	Reynolds number of turbulence \equiv u' L _I /v ()	
R	Universal gas constant = 8.314 J/moleK	
RPM	Revolutions Per Minute (1/min)	
S	Entropy (J/K)	
s	Entropy per unit mass (J/kgK)	
SL	Laminar burning velocity (m/s)	
ST	Turbulent burning velocity (m/s)	
ST	Specific Thrust	
Т	Temperature (K)	
TSFC	Thrust Specific Fuel Consumption	
T _{ad}	Adiabatic Flame Temperature (K)	
Tt	Stagnation temperature (K)	
Tw	Wall temperature	
T∞	Ambient Temperature (K)	
	AME 436 - Spring 2019 - Lecture 1 - Introducti	on

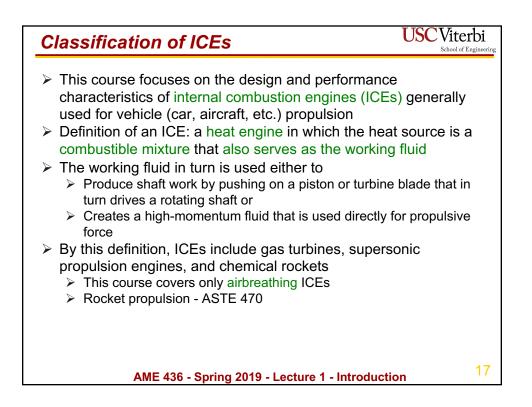

Symbol	Meaning (units)	
U	Internal energy (J)	
u	Internal energy per unit mass (J/kg)	
u	Velocity (m/s) (most easily confused nomenclature – internal en	ergy vs. velocity)
u _e	Exit velocity (m/s)	
u ₁	Flight velocity (m/s)	
u'	Turbulence intensity (m/s)	
UHC	Unburned hydrocarbons	
V	Volume (m ³)	
Vc	Clearance volume (m ³)	
Vd	Displacement volume (m ³)	
v	Specific volume = $1/\rho$ (m ³ /kg)	
W	Work transfer (J or J/kg)	
Ŵ	Work transfer rate (Watts or Watts/kg)	
X _f	Mole fraction fuel in mixture ()	
Xi	Mole fraction of chemical species i ()	
Y _f	Mass fraction of fuel in mixture ()	
Z	Pre-exponential factor in reaction rate expression	
	([moles/m ³] ¹⁻ⁿ K ^{-a} /s) (n = order of reaction)	
z	Elevation (m)	
	AME 436 - Spring 2019 - Lecture 1 - Introduc	tion 7

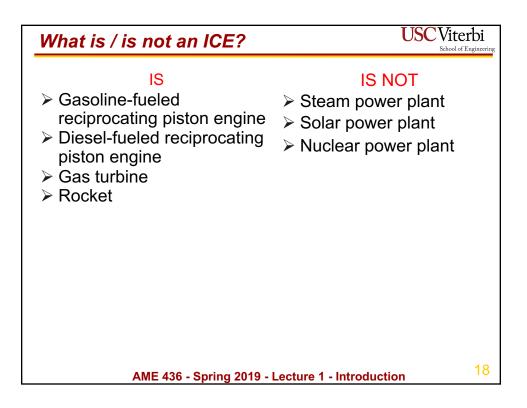

Nomen	clature (summary for whole course) USC Viterbi
Symbol	Meaning (units)
[]i	Concentration of species i (moles/m ³)
()'	Property of fan stream (prime superscript)
()*	Property at reference state (Mach number = 1 for all cases considered in this course)
α	Thermal diffusivity (m ² /s)
α	Turbofan bypass ratio (ratio of fan to compressor air mass flow rates) ()
β	Non-dimensional activation energy $\equiv E/\Re T$ ()
β	Cutoff ratio for Diesel cycle
δ	Flame thickness (m)
$\Delta \tilde{h}_{f,i}^{o}$	Enthalpy of formation of chemical species i at 298K and 1 atm (J/mole)
$\Delta \tilde{s}_{i}^{o}(T)$	Entropy of chemical species i at temperature T and 1 atm (J/mole K)
φ	Equivalence ratio ()
γ	Gas specific heat ratio = C_P/C_v ()
η	Efficiency (thermal efficiency unless otherwise noted)
η _b	Burner (combustor) efficiency for gas turbine engines ()
η _c	Compression efficiency for reciprocating engines ()
η _c	Compressor efficiency for gas turbine engines ()
η _d	Diffuser efficiency for propulsion engines ()
η _e	Expansion efficiency for reciprocating engines ()
η _{fan}	Fan efficiency for propulsion engines ()
η _n	Nozzle efficiency for propulsion engines ()
ηο	Overall efficiency ()
η _p	Propulsive efficiency ()
ηt	Turbine efficiency for gas turbine engines ()
η _{th}	Thermal efficiency ()
η _v	Volumetric efficiency for reciprocating engines ()
	AME 436 - Spring 2019 - Lecture 1 - Introduction

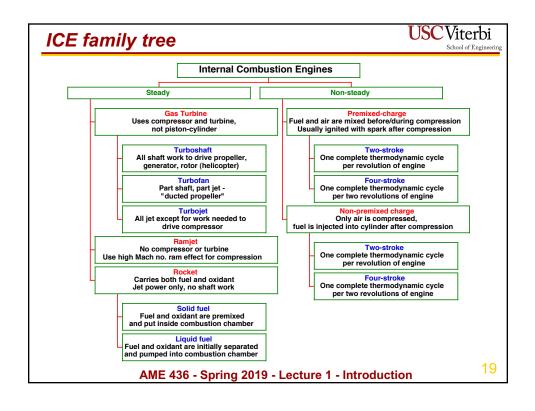

Symbol	Meaning (units)
μ	Dynamic viscosity (kg/m s)
ν	Stoichiometric coefficient ()
ν	Kinematic viscosity = μ/ρ (m ² /s)
π	Stagnation pressure ratio across component i (i = diffuser (d), compressor (c), burner (b), turbine (t), afterburner (ab) or nozzle (n))
π _r	= P_{1t}/P_1 ("recovery pressure" ratio) = {1 + [(γ -1)/2]M ² } ^{γ} ((γ -1) if γ = constant
ρ	Density (kg/m ³)
τ	Torque (N m)
τλ	= T _{4t} /T ₁ (ratio of maximum allowable turbine inlet temperature to ambient temperature)
τ _r	= T_{1t}/T_1 ("recovery temperature" ratio) = 1 + [(γ -1)/2]M ² if γ = constant
ω	Overall chemical reaction rate (1/s)
	AME 436 - Spring 2019 - Lecture 1 - Introduction

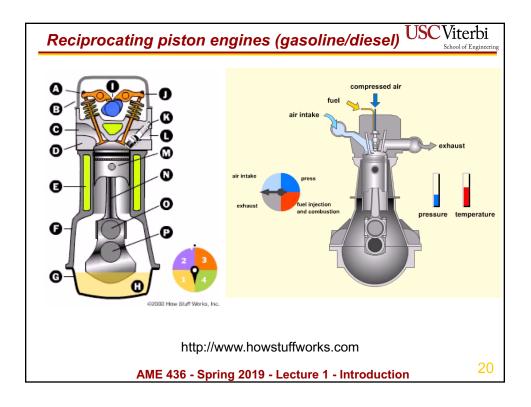

Outline of 1st lecture	USC Viterbi School of Engineering
 Introduction to internal combustion engines World energy usage Classifications of IC engines Types of cycles - gas turbine, rocket, reciprocating pidiesel Why internal combustion engines? Why not somethited History and evolution Things you need to understand before Supplemental material – not covered in lecture Review of basic thermodynamics 	C
AME 436 - Spring 2019 - Lecture 1 - Introduction	on 10

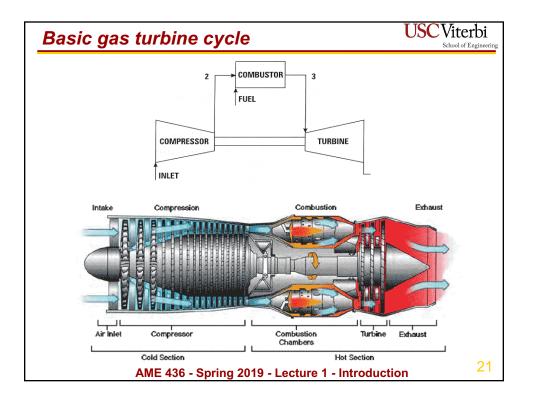


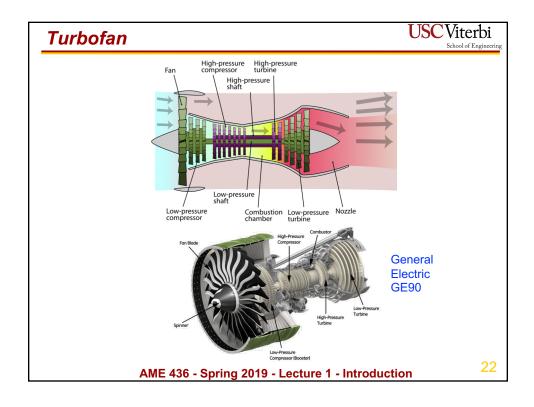


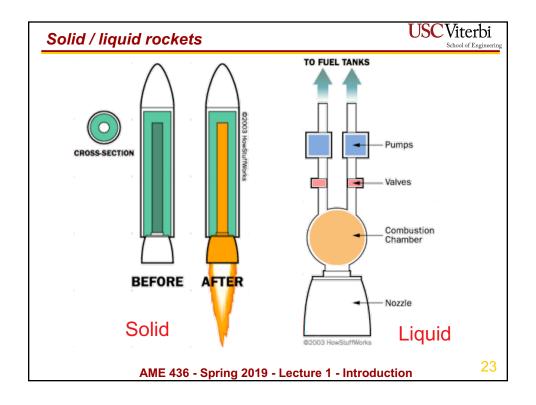


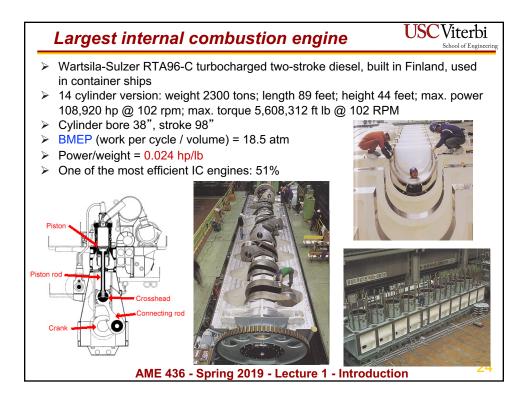


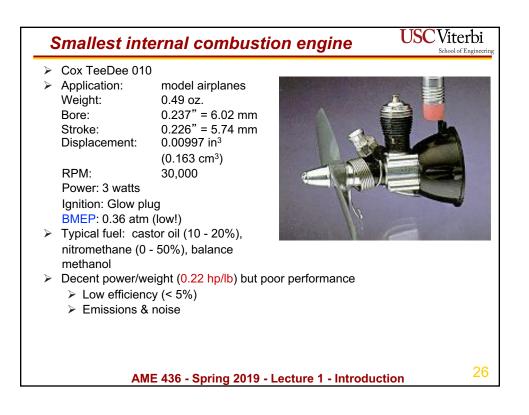


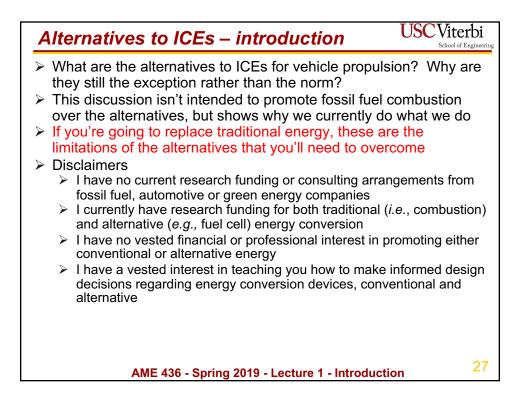


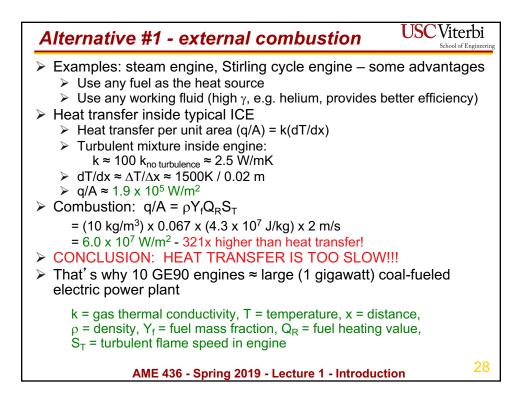


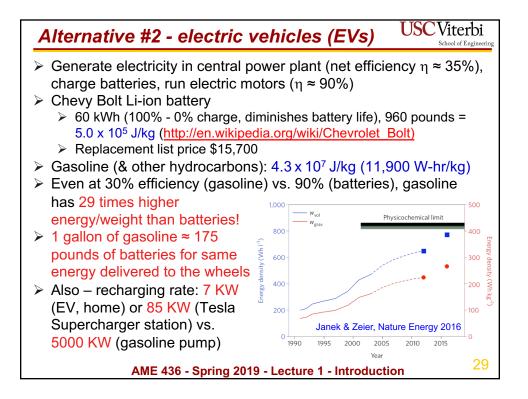


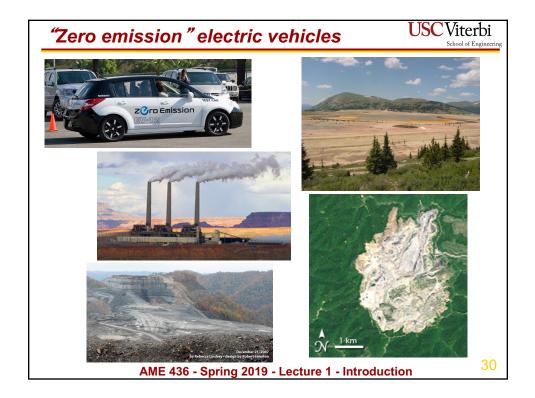


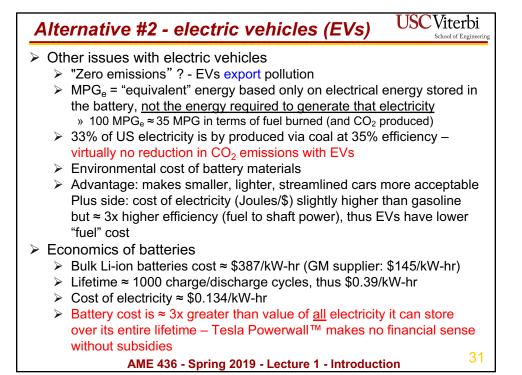


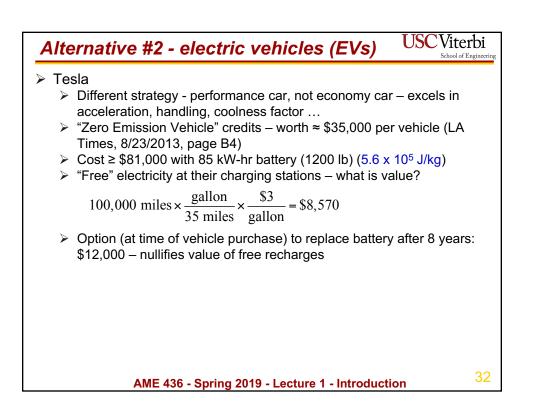

Most powerful internal combustion engine School of Engineering

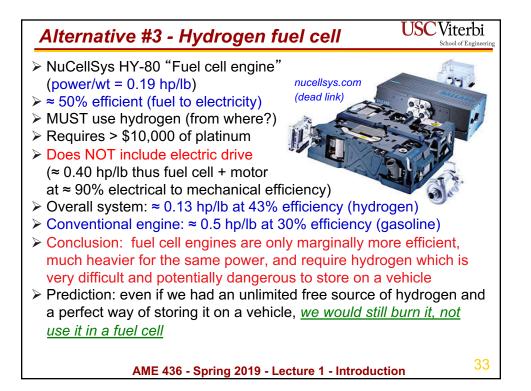

- ➢ Wartsila-Sulzer RTA96-C is the <u>largest</u> IC engine, but the Space Shuttle Solid Rocket Boosters are the <u>most powerful</u> (≈ 42 *million* horsepower (32 hp/lb); not shaft power but kinetic energy of exhaust stream)
- Most powerful shaft-power engine: Siemens SGT5-8000H stationary gas turbine (400 MW = 536,000 HP) (0.65 hp/lb) used for electrical power generation, natural gas fuel, 40% efficiency

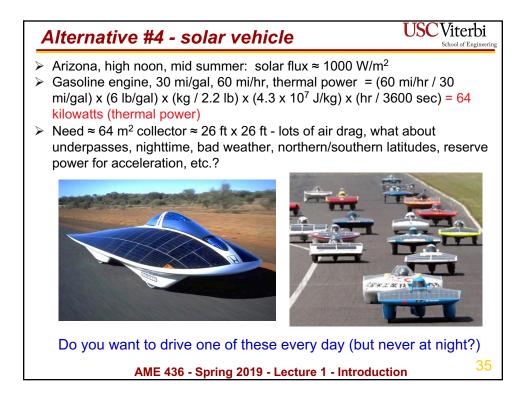


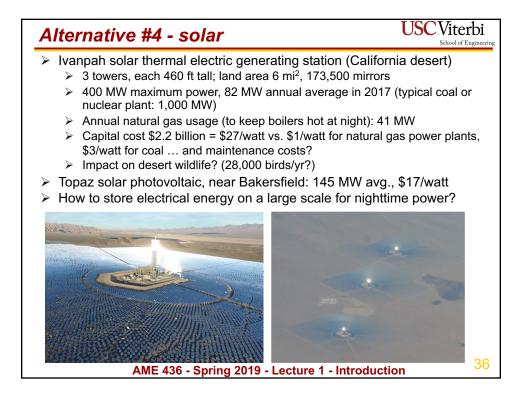

AME 436 - Spring 2019 - Lecture 1 - Introduction



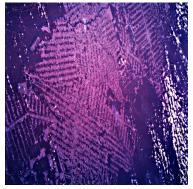






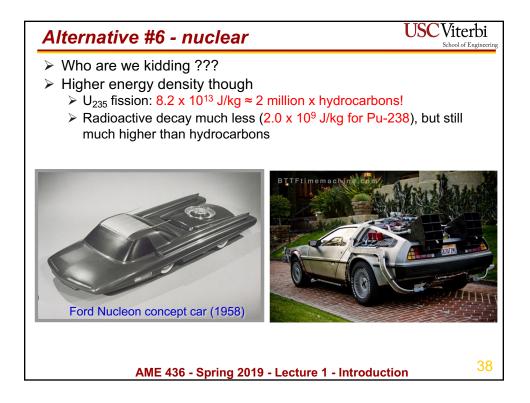


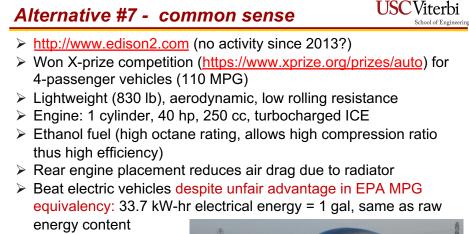
Hydrogen storage USC .	/iterbi
 > Hydrogen is a great fuel > High energy density (1.2 x 10⁸ J/kg, ≈ 3x hydrocarbons) > Faster reaction rates than hydrocarbons (≈ 10 - 100x at same T > Excellent electrochemical properties in fuel cells > But how to store it??? > Cryogenic (very cold, -424°F) liquid, low density (14x lower than > Compressed gas: weight of tank ≈ 17x greater than weight of fu 	n water)
 (Toyota Murai); energy required to compress ≈ energy stored in > Borohydride solutions NaBH₄ + 2H₂O → NaBO₂ (Borax) + 3H₂ (mass solution)/(mass fuel) ≈ 9.25 > Palladium - Pd/H = 164 by weight > Carbon nanotubes - many claims, few facts 	
 Long-chain hydrocarbon (CH₂)_x: (Mass C)/(mass H) = 6, plus C add 94.1 kcal of energy release to 57.8 for H₂! MORAL: <u>By far</u> the best way to store hydrogen is to attach it carbon atoms and make hydrocarbons, even if you're not goir use the carbon as fuel! 	to
AME 436 - Spring 2019 - Lecture 1 - Introduction	34



Alternative #5 - biofuels

Essentially solar energy – "free" (?)

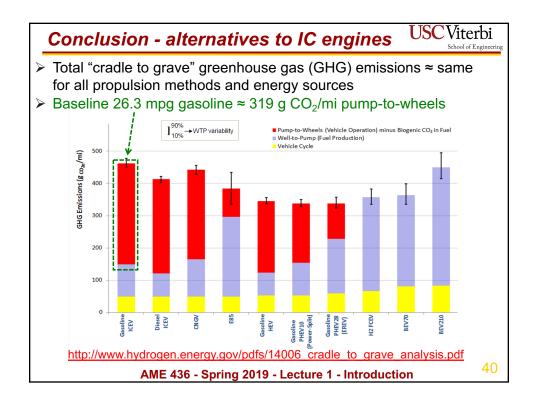

- Barely energy-positive; requires energy for planting, fertilizing, harvesting, fermenting, distilling
- Very land-inefficient compared to other forms of solar energy life forms convert < 1% of sun's energy into combustible material</p>
- Subsidies ended in 2011, but mandate for biofuels to replace fossil petroleum continues
 - > 37 billion gallons by 2022
 - > ≈ 16% of by volume, 12% by energy
- Displaces other plants not necessarily "carbon neutral"
- Uses other resources arable land, water – that might otherwise be used to grow food or provide biodiversity (e.g. in tropical rain forests)

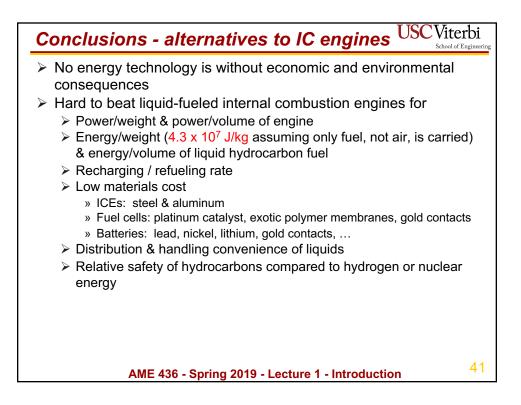


USCViterbi

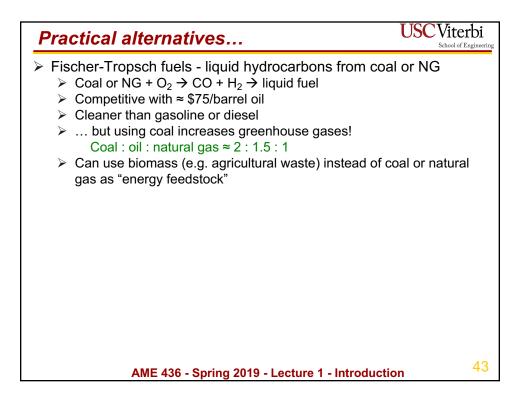
School of Engineering

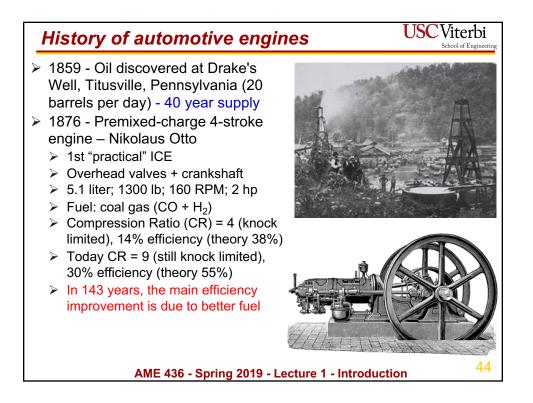
AME 436 - Spring 2019 - Lecture 1 - Introduction

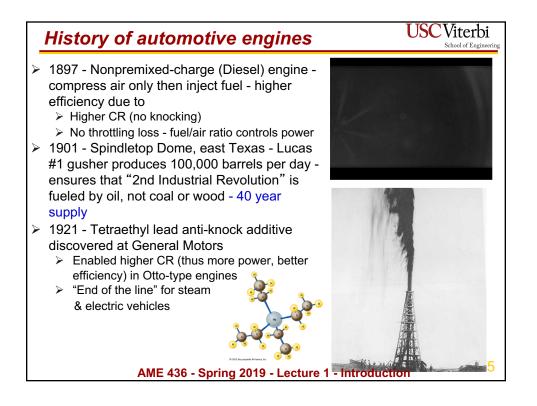


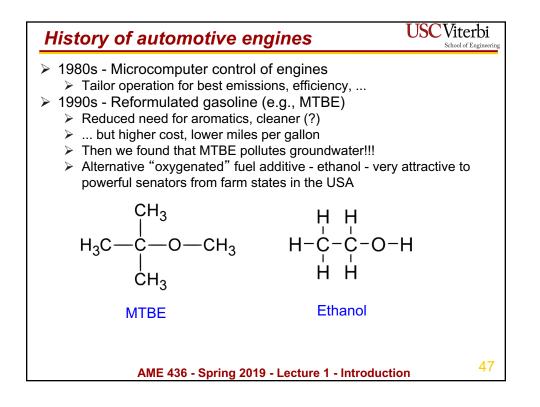


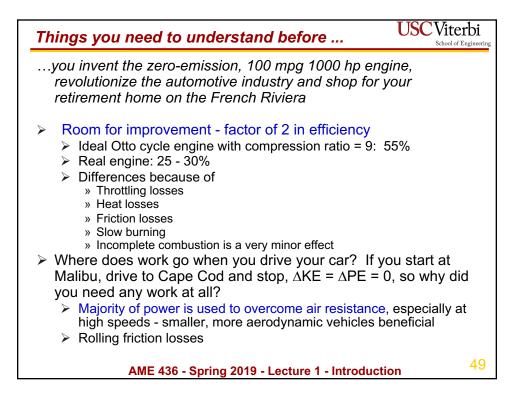
of gasoline (43 x 10⁶ MJ/kg) – doesn't account for fuel burned to create the electrical energy!

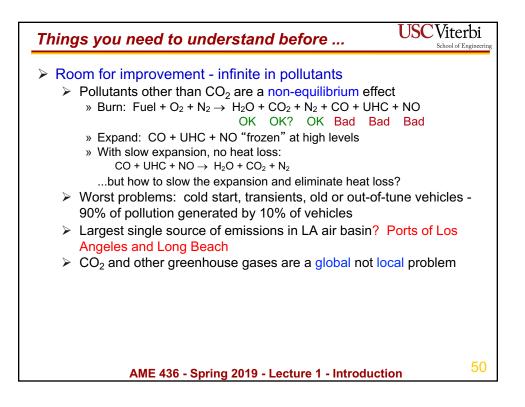


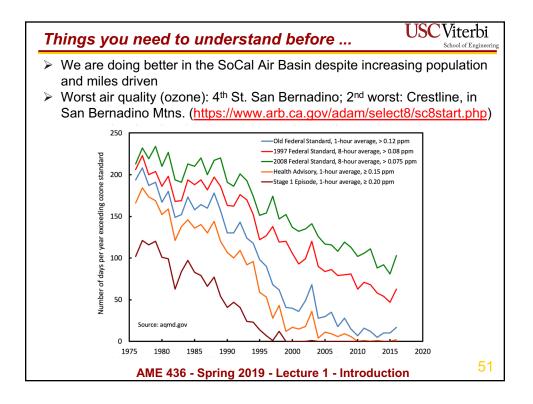

AME 436 - Spring 2019 - Lecture 1 - Introduction

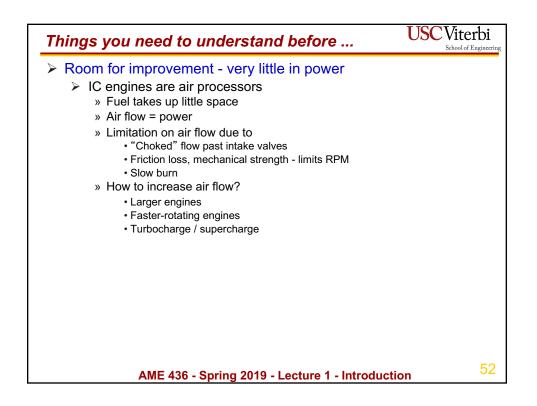


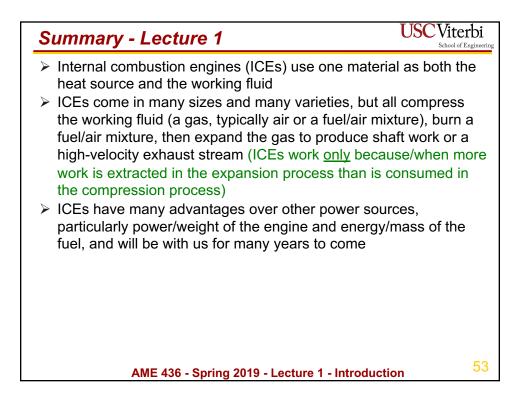

Practical alternatives USCV	iterbi
 Conservation! Edison2 type vehicles Combined cycles Use hot exhaust from ICE to heat water for conventional steam Can achieve > 60% efficiency Not practical for vehicles - too much added volume & weight Natural gas (NG) 3.5 cents / kW-hr (electricity 13.4, gasoline 8.3) (latest bls.gov Somewhat cleaner than gasoline or diesel, but no environments silver bullet Low energy storage density when stored as a compressed gas 3000 lb/in² - 5x lower than gasoline or diesel Lowest CO₂ emissions of any fossil fuel source Problem: greenhouse effect of unburned NG (escaping from production wells, filling stations, etc.) ≈ 8x that of burned NG 	cycle data) al
AME 436 - Spring 2019 - Lecture 1 - Introduction	42






History of automotive engines USC Vite	rbi Engineering
 1938 – Oil discovered at Dammam, Saudi Arabia (40 year supply) 	
1952 - A. J. Haagen-Smit, Caltech	
$\begin{array}{rrrr} NO & + & UHC & + & O_2 & + & sunlight \rightarrow NO_2 & + & O_3 \\ (\text{from exhaust}) & & (\text{brown}) & (\text{irritating}) \end{array}$	
(UHC = unburned hydrocarbons)	
 1960s - Emissions regulations Detroit won't believe it Initial stop-gap measures - lean mixture, EGR, retard spark Poor performance & fuel economy 1072 & 1070 - opergy grippe due to Middle East turmeil 	
 1973 & 1979 – energy crises due to Middle East turmoil Detroit takes a bath, Asian and European imports increase 1975 - Catalytic converters, unleaded fuel 	
More "aromatics" (e.g., benzene) in gasoline – restores octane # lost due to removal of TEL, but carcinogenic, soot-producing	ŧ
AME 436 - Spring 2019 - Lecture 1 - Introduction	46




History of automotive engines USC Viterbi
 2000's - hybrid vehicles Use small gasoline engine operating at maximum power (most efficient way to operate) or turned off if not needed Use generator/batteries/motors to make/store/use surplus power from gasoline engine Plug-in hybrid: half-way between conventional hybrid and electric vehicle 2 benefits to car manufacturers: win-win Consumers will pay a premium for hybrids Helps to meet fleet-average standards for efficiency & emissions Do fuel savings justify extra cost? 2014 study: only 10 of 31 hybrids tested showed a cost benefit over a 75,000 mile, 5 year ownership (http://www.vincentric.com/Home/Industry-Reports/Hybrid-Analysis-October-2014) Dolly Parton: "You wouldn't believe how much energy some people spend to save a little fue!"
> 2010s
 ➢ Electric-only vehicles (Tesla, Bolt, Leaf, …) ➢ Small turbocharged gasoline engines (e.g. Ford Ecoboost™)
AME 436 - Spring 2019 - Lecture 1 - Introduction 48

